SYLLABUS FOR MATH 364 - ORDINARY DIFFERENTIAL EQUATIONS

BARD COLLEGE AT SIMON'S ROCK - SPRING 2014

Time: 2:25-3:20pm MWF	Email: clark@simons-rock.edu
Location: CL1-01	Office: 2nd Floor - Hall College Center
Instructor: Clark Musselman, Ph.D.	Office Phone: (413) 528-7292

1. Course Webpage

The course website, located at http://clarkmusselman.weebly.com/teaching.html, will be updated with various documents pertaining to the course throughout the semester.

2. Required Text

Robinson, J., (2004). An Introduction to Ordinary Differential Equations. New York: Cambridge University Press. ISBN: 9780521533911.

3. Office Hours

Office hours are TBD. This time is reserved for you to talk to me about homework, exams, or anything else pertaining to the course. You do not need to make an appointment with me; you may simply stop by my office. If you have another class during my normally scheduled office hours, send me an email and we can make an appointment.

My office is on the second floor of Hall College Center, which is not wheelchair accessible. If a student needs to meet in an accessible area I will gladly make arrangements and find a suitable meeting place. If this is the case, please let me know via email.

4. Course Description

From the Simon's Rock Course Catalogue: This is an introductory course on ordinary differential equations. Topics include first-order equations, second-order linear equations, harmonic oscillators, qualitative properties of solutions, power series methods, Laplace transforms, and existence and uniqueness theorems. Both the theory and applications are studied, including several problems of historical importance. Prerequisite: Mathematics 221 or permission of the instructor.

5. EVALUATION

Your grade will be based on homework and class participation (20%), presentations (10%), three midterm exams (10% each), one team project (20%) and a final exam (20%). No grades will be dropped and there will be no extra credit. All work is due in class on the due date, however students may turn in work to me in person by 4:30pm without penalty *if I am available*. Students will not be reminded to turn work in during class. It is the students responsibility to remember to submit work to the instructor. Work delivered by campus mail will not be accepted. At the discretion of the instructor, late homework may be accepted for reduced credit.

There will be no make-ups given. If you must miss a quiz, exam, or final due to personal illness, a family emergency, or an official Simon's Rock sport or academic trip, you must provide official documentation (before the exam, or as soon as possible afterward if before-hand is impossible). If you do so, you may, at the discretion of the instructor, be excused from the missed quiz, exam, or final. Excuses will only be given with official documentation and only for the reasons listed above.

6. Homework

Completing homework assignments and checking your answers are the two most important things you can do to be successful in mathematics. Whether or not a given assignment is collected or graded, it is the responsibility of the student to complete *every* problem and to verify that *every* answer is correct. While it is expected that each student write solutions on their own, it is highly recommended that students work in groups, especially on difficult problems.

Eventually, every student will require some assistance in completing their homework. Help is available in many forms. The student can talk to their classmates, see a tutor, visit my office hours, or email me. Do not let more than a day or two go by without getting your questions answered.

Homework assignments are posted online and will **not** be announced in class. Regularly, some homework will be collected and given a 'check' or 'no-check'. The number of 'no-checks' a student receives will adversely affect the homework and class participation portion of their final grade.

When submitting homework, please make sure your pages are stapled together and that no additional assignments are included. If you prefer to write your homework in a notebook, you may turn in a photo-copy of the assignment, as long as it is your original work and in your own hand writing. No notebooks, email submissions, or typed work will be accepted without permission from the instructor.

Also, label each problem and leave plenty of space between them. This will allow your ideas to come across more clearly. If you find yourself crossing out much of your work, please re-write the page.

7. Presentations

During the semester, each student will give two presentations, one short and one long. The short presentation will be a 5-8 minute explanation of a recent exam problem. Shortly after each exam, we will go over the exam in class. I will choose one student to present each exam problem on the board to the class and I will make every effort to give at least 48 hours notice. This will allow you to practice your presentation and to make corrections to your work, if need be. I am happy to meet with any student to discuss their work before they present. Each student will be chosen at least once during the semester to present an exam problem. If there are more students than exam problems, additional problems will be selected from the homework.

The longer and more involved presentation, will be done in groups of two and will last 30-50 minutes, depending on the topic and available class time. A list of available topics for the second presentation will be posted online later in the semester.

Your presentations will be graded not just on content, but also on clarity and completeness and will count toward your final grade. You will lose credit if you are not prepared or if you read from the text during your presentation. The rubric used to score your presentations is posted on the course website.

8. Project

During the semester, one team project will be assigned. The content of the project will be posted online at a later date. Teams will be assigned by me and will include two to four students. You will be expected to work with your group members and *only* with members of your assigned group. The content of the project should not be discussed with members of other groups until after the project has been submitted to the instructor. **Discussing the project beforehand**, with anyone other than your team mates or the instructor, will constitute academic dishonesty. As always, I am more than happy to meet with individual students or with entire groups to discuss the projects. Time permitting, you will be given time in class to work with your groups.

Your final write-up must be in your own writing, legible, and be written in blue or black ink on the project packet and must show all necessary work. Typed solutions will not be accepted. Illegible solutions will be returned to the student ungraded. The student will then have the opportunity to rewrite and resubmit their work. Late submissions, including those returned for being illegible, will be given a 5% penalty per day, until I receive a legible and complete write-up.

9. Exams

Three midterm exams will be given throughout the semester. No calculators, notes, or books will be allowed on exams.

A final exam will be given at a date to be determined by the College. No calculators, notes, or books will be allowed. The final exam will be based on material from the entire course, although it will be weighted slightly more heavily on the material covered after the last midterm exam.

10. Attendance

Classes at Simon's Rock are interactive and all participants are adversely affected if one student is missing. As such, you are expected to attend every class. If you do miss a class, you are responsible for learning the material that was covered in your absence. You are also responsible for any quiz, exam, or in-class activity that you miss (see evaluation above). Initially, the student should contact a classmate to determine what material was missed. Only after consulting a classmate should the student contact the instructor for extra help on missed class material. Further, if you miss a week's worth of classes for any reason, The Office of Academic Affairs will be notified and you may be suspended from the course.

A student who arrives late or uses any electronic device (cell phone, laptop, etc.) during class will be considered *effectively* absent. Two effective absences will be treated as a single absence. Attendance will be taken once during class. If a student is not present when attendance is taken, it is the student's responsibility to check in with the instructor after class.

11. FURTHER INFORMATION

• Keep a copy of all your work before you turn it in so that nothing is lost in the unlikely event that papers go missing.

- You should expect to spend *at least* three to four hours working on this course outside of class for *each* hour in class.
- Academic honesty is valued at Simon's Rock. All students are expected to know and uphold the college's policies on academic dishonesty as described in the Catalogue.
- A student with special needs should feel welcome to discuss these with the instructor.
- Keep an updated copy of this syllabus. In the event that you transfer to another institution, this syllabus may be required for transfer credits to be accepted by your new institution.
- This syllabus is subject to change.
- Last updated 17:57 Monday 20th January, 2014.

Spring 2014 - Math 364 - ODE - Schedule

Day	Dates	Sections / Homework	Events
М	1/27	§1: 2, 3, 5	
		§2: please read	
W	1/29	$\S3: 1.$ Also, plot (ix) in "dfield" and examine solns.	§1 due
		§5: 1, 4, 5 (typo: $\dot{v} = -g$), 6, 7 (typo: " is $V \cos \theta$ ")	
F	1/31	invited speaker	
M	2/3	86: 1, 2, 3	§3 due
W	2/5	snow day - class canceled	
F	2/7	§6: WS1	§5 due
M	2/10	§6: WS2	
W	2/12	$ \S7: 1-4, 6$	WS1 due
F	2/14	§7 continued	
M	2/17	Exam 1	
W	2/19	Presentations	
F	2/21	§8: 1-4, 6 (typo: Ex 5.6), 10, 11 (Possible typo: Should be $\int_{x_0}^{\infty} \frac{1}{f(x)} dx$)	Last Day to Drop
М	2/24	§9: 1-3, 6, 8	
W	2/26	§10: 1i, 1iii, 3i, 4i, 5, 6	§8 due
F	2/28	§11: 1-3	
M	3/3	§4: 1i, 1iii, 1v, 2ii, 2iv	Class in Fisher
W	3/5	§21: 1, 2, 5, 8, Optional: 7	§9 due
F	3/7	WS3	Class in Fisher
M	3/10	Review	
W	3/12	Exam 2	
F	3/14	Presentations	
	3/15-3/30	Spring Break	
M	3/31	Project - Class in Fisher	
W	4/2	Project - Class in Fisher	Long Pres request due
F	4/4	$\S12: 1$ (Do several, but not all. Check your solutions.), 2, 3	Handouts 1 & 2
		§19: 1 (Do several, but not all. Check your solutions.), 2	
M	4/7	§13: 1, 7, 8, 9, Optional: 5	VJR, EL, WM
W	4/9	$\S14: 1$ (Do several, but not all. Check your solutions.), 2, 3	
F	4/11	§15: 1, 2, 3	Project due
M	4/14	$\S16: 1$ (see page 151 for solving cubics)	
W	4/16	§17: 1, 2, 4, 5, 7, Optional: 8	
F	4/18	§18: §18: 1i-v (alternate formula and method), Optional: vi, vii	
M	4/21	§20: 1, 2i, 2ii, 2iv, 4, 5, 10	
W	4/23	$\S22: 1(i-iv), 4(i-iii)$	JC, JB, WLL
F	4/25	§23: 1, 3, 6, 7	GG, IA, QC
M	4/28	Exam 3	
W	4/30	Presentations	Last Day to Withdraw
F	5/2	§24: 1, 2	MP, KT
M	5/5	§25: 1	
W	5/7	\$26: 1 (as needed)	
F	5/9	§27: 1 (as needed)	
M	5/12	§28: 1, 2, 4 (For 2, just solve and draw.)	MP, DS, JY
W	5/14	$\S29: 1$ (as needed), 2 (as needed), 4, 5i	NS, IG
Г	5/20	Final Exam 12:00pm-2:00pm	

- "dfield and pplane": http://math.rice.edu/~dfield/dfpp.html
- This schedule is subject to change. Check the course webpage frequently for updates.
 Last updated: 08:20 Thursday 17th April, 2014

Contents

	Pre	face		page xiii
	Intr	oductio	on	1
Part I	Fir	st orde	er differential equations	3
	1	Radio	pactive decay and carbon dating	5
		1.1	Radioactive decay	5
		1.2	Radiocarbon dating	6
		Exerc	vises	8
	2	Integr	ration variables	9
	3	Class	ification of differential equations	11
		3.1	Ordinary and partial differential equations	11
		3.2	The order of a differential equation	13
		3.3	Linear and nonlinear	13
		3.4	Different types of solution	14
		Exerc	vises	16
	4	*Graj	phical representation of solutions	
		usi	ng Matlab	18
		Exerc	vises	21
	5	'Trivi	ial' differential equations	22
		5.1	The Fundamental Theorem of Calculus	22
		5.2	General solutions and initial conditions	25
		5.3	Velocity, acceleration and Newton's second law	
			of motion	29
		5.4	An equation that we cannot solve explicitly	32
		Exerc	cises	33

Some of the chapters, and some sections within other chapters, are marked with an asterisk (*). These parts of the book contain material that either is more advanced, or expands on points raised elsewhere in the text.

Contents

	6	Existe	ence and uniqueness of solutions	38
		6.1	The case for an abstract result	38
		6.2	The existence and uniqueness theorem	40
		6.3	Maximal interval of existence	41
		6.4	The Clay Mathematics Institute's \$1 000 000	
			question	42
		Exerc	vises	44
	7	Scala	r autonomous ODEs	46
		7.1	The qualitative approach	46
		7.2	Stability, instability and bifurcation	48
		7.3	Analytic conditions for stability and instability	49
		7.4	Structural stability and bifurcations	50
		7.5	Some examples	50
		7.6	The pitchfork bifurcation	54
		7.7	Dynamical systems	56
		Exerc	cises	56
	8	Separ	rable equations	59
		8.1	The solution 'recipe'	59
		8.2	The linear equation $\dot{x} = \lambda x$	61
		8.3	Malthus' population model	62
		8.4	Justifying the method	64
		8.5	A more realistic population model	66
		8.6	Further examples	68
		Exerc	cises	72
	9	First	order linear equations and the integrating factor	75
		9.1	Constant coefficients	75
		9.2	Integrating factors	76
		9.3	Examples	78
		9.4	Newton's law of cooling	79
		Exerc	cises	86
	10	Two '	'tricks' for nonlinear equations	89
		10.1	Exact equations	89
		10.2	Substitution methods	94
		Exerc	cises	97
Part II	Sec	ond or	der linear equations with constant coefficients	99
	11	Secor	nd order linear equations: general theory	101
		11.1	Existence and uniqueness	101
		11.2	Linearity	102
		11.3	Linearly independent solutions	104
		11.4	*The Wronskian	106

		Contents	ix
		11.5 *Linear algebra	107
		Exercises	109
	12	Homogeneous second order linear equations	111
		12.1 Two distinct real roots	112
		12.2 A repeated real root	113
		12.3 No real roots	115
		Exercises	118
	13	Oscillations	120
		13.1 The spring	120
		13.2 The simple pendulum	122
		13.3 Damped oscillations	123
		Exercises	126
	14	Inhomogeneous second order linear equations	131
		14.1 Complementary function and particular integral	131
		14.2 When $f(t)$ is a polynomial	133
		14.3 When $f(t)$ is an exponential	135
		14.4 When $f(t)$ is a sine or cosine	137
		14.5 Rule of thumb	139
		14.6 More complicated functions $f(t)$	139
		Exercises	140
	15	Resonance	141
		15.1 Periodic forcing	141
		15.2 Pseudo resonance in physical systems	145
		Exercises	148
	16	Higher order linear equations	150
		16.1 Complementary function and particular	
		integral	150
		16.2 *The general theory for <i>n</i> th order equations	152
		Exercises	153
Part III	Lin	ear second order equations with	
	v	variable coefficients	157
	17	Reduction of order	159
		Exercises	162
	18	*The variation of constants formula	164
		Exercises	168
	19	*Cauchy–Euler equations	170
		19.1 Two real roots	171
		19.2 A repeated root	171
		19.3 Complex roots	173
		Exercises	174

Comenis

	20	*Seri	es solutions of second order linear equations	176
		20.1	Power series	176
		20.2	Ordinary points	178
		20.3	Regular singular points	183
		20.4	Bessel's equation	187
		Exerc	vises	195
Part IV	Nui	nerica	l methods and difference equations	199
	21	Euler	's method	201
		21.1	Euler's method	201
		21.2	An example	203
		21.3	*MATLAB implementation of Euler's method	204
		21.4	Convergence of Euler's method	206
		Exerc	cises	209
	22	Diffe	rence equations	213
		22.1	First order difference equations	213
		22.2	Second order difference equations	215
		22.3	The homogeneous equation	215
		22.4	Particular solutions	219
		Exerc	cises	222
	23	Nonli	inear first order difference equations	224
		23.1	Fixed points and stability	224
		23.2	Cobweb diagrams	225
		23.3	Periodic orbits	226
		23.4	Euler's method for autonomous equations	227
		Exerc	vises	230
	24	The le	ogistic map	233
		24.1	Fixed points and their stability	234
		24.2	Periodic orbits	234
		24.3	The period-doubling cascade	237
		24.4	The bifurcation diagram and more periodic orbits	238
		24.5	Chaos	240
		24.6	*Analysis of $x_{n+1} = 4x_n(1 - x_n)$	242
		Exerc	cises	245
Part V	Coι	ipled l	inear equations	247
	25	*Vect	tor first order equations and higher order equations	249
		25.1	Existence and uniqueness for second order	
			equations	251
		Exerc	vises	252
	26	Expli	cit solutions of coupled linear systems	253
		Exerc	vises	257

		Contents	xi
	27	Eigenvalues and eigenvectors	259
		27.1 Rewriting the equation in matrix form	259
		27.2 Eigenvalues and eigenvectors	260
		27.3 *Eigenvalues and eigenvectors with MATLAB	266
		Exercises	267
	28	Distinct real eigenvalues	269
		28.1 The explicit solution	270
		28.2 Changing coordinates	271
		28.3 Phase diagrams for uncoupled equations	276
		28.4 Phase diagrams for coupled equations	279
		28.5 Stable and unstable manifolds	281
		Exercises	282
	29	Complex eigenvalues	285
		29.1 The explicit solution	285
		29.2 Changing coordinates and the phase portrait	287
		29.3 The phase portrait for the original equation	291
		Exercises	292
	30	A repeated real eigenvalue	295
		30.1 A is a multiple of the identity: stars	295
		30.2 A is not a multiple of the identity: improper	
		nodes	295
		Exercises	299
	31	Summary of phase portraits for linear equations	301
		31.1 *Jordan canonical form	301
		Exercises	305
Part VI	Coi	upled nonlinear equations	307
	32	Coupled nonlinear equations	309
		32.1 Some comments on phase portraits	309
		32.2 Competition of species	310
		32.3 Direction fields	311
		32.4 Analytical method for phase portraits	314
		Exercises	322
	33	Ecological models	323
		33.1 Competing species	323
		33.2 Predator-prey models I	331
		33.3 Predator-prey models II	334
		Exercises	338
	34	Newtonian dynamics	341
		34.1 One-dimensional conservative systems	341
		34.2 *A bead on a wire	344

	34.3	Dissipative systems	347
	Exerc	ises	350
35	The '	real' pendulum	352
	35.1	The undamped pendulum	352
	35.2	The damped pendulum	356
	35.3	Alternative phase space	358
	Exerc	ises	358
36	*Peri	odic orbits	360
	36.1	Dulac's criterion	360
	36.2	The Poinacré–Bendixson Theorem	361
	Exerc	ises	362
37	*The	Lorenz equations	364
38	What	next?	373
	38.1	Partial differential equations and boundary	
		value problems	373
	38.2	Dynamical systems and chaos	374
	Exerc	ises	375
App	oendix 1	A Real and complex numbers	379
App	oendix I	B Matrices, eigenvalues, and eigenvectors	382
App	oendix (C Derivatives and partial derivatives	387
Ind	ex		395