SYLLABUS FOR MATH 364 - ORDINARY DIFFERENTIAL EQUATIONS

BARD COLLEGE AT SIMON'S ROCK - SPRING 2014

Time: 2:25-3:20pm MWF
Location: CL1-01
Instructor: Clark Musselman, Ph.D.

Email: clark@simons-rock.edu
Office: 2nd Floor - Hall College Center
Office Phone: (413) 528-7292

1. Course Webpage

The course website, located at http://clarkmusselman.weebly.com/teaching.html, will be updated with various documents pertaining to the course throughout the semester.

2. Required Text

Robinson, J., (2004). An Introduction to Ordinary Differential Equations. New York: Cambridge University Press. ISBN: 9780521533911.

3. Office Hours

Office hours are TBD. This time is reserved for you to talk to me about homework, exams, or anything else pertaining to the course. You do not need to make an appointment with me; you may simply stop by my office. If you have another class during my normally scheduled office hours, send me an email and we can make an appointment.

My office is on the second floor of Hall College Center, which is not wheelchair accessible. If a student needs to meet in an accessible area I will gladly make arrangements and find a suitable meeting place. If this is the case, please let me know via email.

4. Course Description

From the Simon's Rock Course Catalogue: This is an introductory course on ordinary differential equations. Topics include first-order equations, second-order linear equations, harmonic oscillators, qualitative properties of solutions, power series methods, Laplace transforms, and existence and uniqueness theorems. Both the theory and applications are studied, including several problems of historical importance. Prerequisite: Mathematics 221 or permission of the instructor.

5. Evaluation

Your grade will be based on homework and class participation (20\%), presentations (10\%), three midterm exams (10% each), one team project (20%) and a final exam (20%). No grades will be dropped and there will be no extra credit. All work is due in class on the due date, however students may turn in work to me in person by $4: 30 \mathrm{pm}$ without penalty if I am available. Students will not be reminded to turn work in during class. It is the students responsibility to remember to submit work to the instructor. Work delivered by campus mail will not be accepted. At the discretion of the instructor, late homework may be accepted for reduced credit.

There will be no make-ups given. If you must miss a quiz, exam, or final due to personal illness, a family emergency, or an official Simon's Rock sport or academic trip, you must provide official documentation (before the exam, or as soon as possible afterward if before-hand is impossible). If you do so, you may, at the discretion of the instructor, be excused from the missed quiz, exam, or final. Excuses will only be given with official documentation and only for the reasons listed above.

6. HOMEWORK

Completing homework assignments and checking your answers are the two most important things you can do to be successful in mathematics. Whether or not a given assignment is collected or graded, it is the responsibility of the student to complete every problem and to verify that every answer is correct. While it is expected that each student write solutions on their own, it is highly recommended that students work in groups, especially on difficult problems.

Eventually, every student will require some assistance in completing their homework. Help is available in many forms. The student can talk to their classmates, see a tutor, visit my office hours, or email me. Do not let more than a day or two go by without getting your questions answered.

Homework assignments are posted online and will not be announced in class. Regularly, some homework will be collected and given a 'check' or 'no-check'. The number of 'no-checks' a student receives will adversely affect the homework and class participation portion of their final grade.

When submitting homework, please make sure your pages are stapled together and that no additional assignments are included. If you prefer to write your homework in a notebook, you may turn in a photo-copy of the assignment, as long as it is your original work and in your own hand writing. No notebooks, email submissions, or typed work will be accepted without permission from the instructor.

Also, label each problem and leave plenty of space between them. This will allow your ideas to come across more clearly. If you find yourself crossing out much of your work, please re-write the page.

7. Presentations

During the semester, each student will give two presentations, one short and one long. The short presentation will be a 5-8 minute explanation of a recent exam problem. Shortly after each exam, we will go over the exam in class. I will choose one student to present each exam problem on the board to the class and I will make every effort to give at least 48 hours notice. This will allow you to practice your presentation and to make corrections to your work, if need be. I am happy to meet with any student to discuss their work before they present. Each student will be chosen at least once during the semester to present an exam problem. If there are more students than exam problems, additional problems will be selected from the homework.

The longer and more involved presentation, will be done in groups of two and will last 30-50 minutes, depending on the topic and available class time. A list of available topics for the second presentation will be posted online later in the semester.

Your presentations will be graded not just on content, but also on clarity and completeness and will count toward your final grade. You will lose credit if you are not prepared or if you read from the text during your presentation. The rubric used to score your presentations is posted on the course website.

8. Project

During the semester, one team project will be assigned. The content of the project will be posted online at a later date. Teams will be assigned by me and will include two to four students. You will be expected to work with your group members and only with members of your assigned group. The content of the project should not be discussed with members of other groups until after the project has been submitted to the instructor. Discussing the project beforehand, with anyone other than your team mates or the instructor, will constitute academic dishonesty. As always, I am more than happy to meet with individual students or with entire groups to discuss the projects. Time permitting, you will be given time in class to work with your groups.

Your final write-up must be in your own writing, legible, and be written in blue or black ink on the project packet and must show all necessary work. Typed solutions will not be accepted. Illegible solutions will be returned to the student ungraded. The student will then have the opportunity to rewrite and resubmit their work. Late submissions, including those returned for being illegible, will be given a 5% penalty per day, until I receive a legible and complete write-up.

9. Exams

Three midterm exams will be given throughout the semester. No calculators, notes, or books will be allowed on exams.

A final exam will be given at a date to be determined by the College. No calculators, notes, or books will be allowed. The final exam will be based on material from the entire course, although it will be weighted slightly more heavily on the material covered after the last midterm exam.

10. Attendance

Classes at Simon's Rock are interactive and all participants are adversely affected if one student is missing. As such, you are expected to attend every class. If you do miss a class, you are responsible for learning the material that was covered in your absence. You are also responsible for any quiz, exam, or in-class activity that you miss (see evaluation above). Initially, the student should contact a classmate to determine what material was missed. Only after consulting a classmate should the student contact the instructor for extra help on missed class material. Further, if you miss a week's worth of classes for any reason, The Office of Academic Affairs will be notified and you may be suspended from the course.

A student who arrives late or uses any electronic device (cell phone, laptop, etc.) during class will be considered effectively absent. Two effective absences will be treated as a single absence. Attendance will be taken once during class. If a student is not present when attendance is taken, it is the student's responsibility to check in with the instructor after class.

11. Further Information

- Keep a copy of all your work before you turn it in so that nothing is lost in the unlikely event that papers go missing.
- You should expect to spend at least three to four hours working on this course outside of class for each hour in class.
- Academic honesty is valued at Simon's Rock. All students are expected to know and uphold the college's policies on academic dishonesty as described in the Catalogue.
- A student with special needs should feel welcome to discuss these with the instructor.
- Keep an updated copy of this syllabus. In the event that you transfer to another institution, this syllabus may be required for transfer credits to be accepted by your new institution.
- This syllabus is subject to change.
- Last updated 17:57 Monday $20^{\text {th }}$ January, 2014.

Spring 2014-Math 364-ODE - Schedule

Day	Dates	Sections / Homework	Events
M W F	$\begin{aligned} & 1 / 27 \\ & 1 / 29 \\ & 1 / 31 \end{aligned}$	```§1: 2, 3, 5 §2: please read §3: 1. Also, plot (ix) in "dfield" and examine solns. \(\S 5: 1,4,5\) (typo: \(\dot{v}=-g\)), 6, 7 (typo: "... is \(V \cos \theta \ldots "\)) invited speaker```	§1 due
$\begin{gathered} \mathrm{M} \\ \mathrm{~W} \\ \mathrm{~F} \end{gathered}$	$\begin{aligned} & 2 / 3 \\ & 2 / 5 \\ & 2 / 7 \end{aligned}$	$\begin{aligned} & \S 6: 1,2,3 \\ & \text { snow day - class canceled } \\ & \S 6: \text { WS1 } \end{aligned}$	$\S 3$ due $\S 5$ due
$\begin{gathered} \mathrm{M} \\ \mathrm{~W} \\ \mathrm{~F} \\ \hline \end{gathered}$	$\begin{aligned} & 2 / 10 \\ & 2 / 12 \\ & 2 / 14 \end{aligned}$	§6: WS2 $\S 7: 1-4,6$ $\S 7$ continued	WS1 due
$\begin{gathered} \hline \mathrm{M} \\ \mathrm{~W} \\ \mathrm{~F} \end{gathered}$	$\begin{aligned} & \hline 2 / 17 \\ & 2 / 19 \\ & 2 / 21 \end{aligned}$	Exam 1 Presentations §8: 1-4, 6 (typo: Ex 5.6), 10, 11 (Possible typo: Should be $\int_{x_{0}}^{\infty} \frac{1}{f(x)} d x$)	Last Day to Drop
$\begin{gathered} \mathrm{M} \\ \mathrm{~W} \\ \mathrm{~F} \end{gathered}$	$\begin{aligned} & 2 / 24 \\ & 2 / 26 \\ & 2 / 28 \end{aligned}$	$\begin{aligned} & \S 9: 1-3,6,8 \\ & \S 10: 1 \mathrm{i}, 1 \mathrm{iii}, 3 \mathrm{i}, 4 \mathrm{i}, 5,6 \\ & \S 11: 1-3 \end{aligned}$	§8 due
$\begin{gathered} \hline \mathrm{M} \\ \mathrm{~W} \\ \mathrm{~F} \end{gathered}$	$\begin{aligned} & \hline 3 / 3 \\ & 3 / 5 \\ & 3 / 7 \\ & \hline \end{aligned}$	§4: 1i, 1iii, 1v, 2ii, 2iv §21: $1,2,5,8$, Optional: 7 WS3	Class in Fisher $\S 9$ due Class in Fisher
$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~W} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 3 / 10 \\ & 3 / 12 \\ & 3 / 14 \end{aligned}$	Review Exam 2 Presentations	
	3/15-3/30	Spring Break	
$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~W} \\ & \mathrm{~F} \end{aligned}$	$\begin{gathered} \hline 3 / 31 \\ 4 / 2 \\ 4 / 4 \end{gathered}$	Project - Class in Fisher Project - Class in Fisher §12: 1 (Do several, but not all. Check your solutions.), 2, 3 §19: 1 (Do several, but not all. Check your solutions.), 2	Long Pres request due Handouts 1 \& 2
$\begin{gathered} \hline \mathrm{M} \\ \mathrm{~W} \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} 4 / 7 \\ 4 / 9 \\ 4 / 11 \end{gathered}$	§13: 1, 7, 8, 9, Optional: 5 §14: 1 (Do several, but not all. Check your solutions.), 2, 3 §15: 1, 2, 3	VJR, EL, WM Project due
$\begin{gathered} \mathrm{M} \\ \mathrm{~W} \\ \mathrm{~F} \end{gathered}$	$\begin{aligned} & 4 / 14 \\ & 4 / 16 \\ & 4 / 18 \end{aligned}$	§16: 1 (see page 151 for solving cubics) §17: 1, 2, 4, 5, 7, Optional: 8 §18: §18: 1i-v (alternate formula and method), Optional: vi, vii	
$\begin{aligned} & \mathrm{M} \\ & \mathrm{~W} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 4 / 21 \\ & 4 / 23 \\ & 4 / 25 \end{aligned}$	$\begin{aligned} & \S 20: 1,2 \mathrm{i}, 2 \mathrm{ii}, 2 \mathrm{iv}, 4,5,10 \\ & \S 22: 1(\mathrm{i}-\mathrm{iv}), 4(\mathrm{i}-\mathrm{iii}) \\ & \S 23: 1,3,6,7 \\ & \hline \end{aligned}$	JC, JB, WLL GG, IA, QC
$\begin{gathered} \hline \mathrm{M} \\ \mathrm{~W} \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} 4 / 28 \\ 4 / 30 \\ 5 / 2 \end{gathered}$	Exam 3 Presentations §24: 1, 2	Last Day to Withdraw MP, KT
$\begin{aligned} & \mathrm{M} \\ & \mathrm{~W} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 5 / 5 \\ & 5 / 7 \\ & 5 / 9 \end{aligned}$	$\begin{aligned} & \S 25: 1 \\ & \S 26: 1 \text { (as needed) } \\ & \S 27: 1 \text { (as needed) } \end{aligned}$	
$\begin{aligned} & \mathrm{M} \\ & \mathrm{~W} \end{aligned}$	$\begin{array}{r} 5 / 12 \\ 5 / 14 \\ \hline \end{array}$	§28: 1, 2, 4 (For 2, just solve and draw.) §29: 1 (as needed), 2 (as needed), $4,5 \mathrm{i}$	$\begin{aligned} & \text { MP, DS, JY } \\ & \text { NS, IG } \end{aligned}$
T	5/20	Final Exam 12:00pm-2:00pm	

- "dfield and pplane": http://math.rice.edu/~dfield/dfpp.html
- This schedule is subject to change. Check the course webpage frequently for updates.
- Last updated: 08:20 Thursday $17^{\text {th }}$ April, 2014

Contents

Preface page xiii
Introduction 1
Part I First order differential equations 3
1 Radioactive decay and carbon dating 5
1.1 Radioactive decay 5
1.2 Radiocarbon dating 6
Exercises 8
2 Integration variables 9
3 Classification of differential equations 11
3.1 Ordinary and partial differential equations 11
3.2 The order of a differential equation 13
3.3 Linear and nonlinear 13
3.4 Different types of solution 14
Exercises 16
4 *Graphical representation of solutions using Matlab 18
Exercises 21
5 'Trivial' differential equations 22
5.1 The Fundamental Theorem of Calculus 22
5.2 General solutions and initial conditions 25
5.3 Velocity, acceleration and Newton's second law of motion 29
5.4 An equation that we cannot solve explicitly 32
Exercises 33

[^0]6 Existence and uniqueness of solutions 38
6.1 The case for an abstract result 38
6.2 The existence and uniqueness theorem 40
6.3 Maximal interval of existence 41
6.4 The Clay Mathematics Institute's \$1000000 question 42
Exercises 44
7 Scalar autonomous ODEs 46
7.1 The qualitative approach 46
7.2 Stability, instability and bifurcation 48
7.3 Analytic conditions for stability and instability 49
7.4 Structural stability and bifurcations 50
7.5 Some examples 50
7.6 The pitchfork bifurcation 54
7.7 Dynamical systems 56
Exercises 56
8 Separable equations 59
8.1 The solution 'recipe' 59
8.2 The linear equation $\dot{x}=\lambda x$ 61
8.3 Malthus' population model 62
8.4 Justifying the method 64
8.5 A more realistic population model 66
8.6 Further examples 68
Exercises 72
9 First order linear equations and the integrating factor 75
9.1 Constant coefficients 75
9.2 Integrating factors 76
9.3 Examples 78
9.4 Newton's law of cooling 79
Exercises 86
10 Two 'tricks' for nonlinear equations 89
10.1 Exact equations 89
10.2 Substitution methods 94
Exercises 97
Part II Second order linear equations with constant coefficients 99
11 Second order linear equations: general theory 101
11.1 Existence and uniqueness 101
11.2 Linearity 102
11.3 Linearly independent solutions 104
11.4 *The Wronskian 106
11.5 *Linear algebra 107
Exercises 109
12 Homogeneous second order linear equations 111
12.1 Two distinct real roots 112
12.2 A repeated real root 113
12.3 No real roots 115
Exercises 118
13 Oscillations 120
13.1 The spring 120
13.2 The simple pendulum 122
13.3 Damped oscillations 123
Exercises 126
14 Inhomogeneous second order linear equations 131
14.1 Complementary function and particular integral 131
14.2 When $f(t)$ is a polynomial 133
14.3 When $f(t)$ is an exponential 135
14.4 When $f(t)$ is a sine or cosine 137
14.5 Rule of thumb 139
14.6 More complicated functions $f(t)$ 139
Exercises 140
15 Resonance 141
15.1 Periodic forcing 141
15.2 Pseudo resonance in physical systems 145
Exercises 148
16 Higher order linear equations 150
16.1 Complementary function and particular integral 150
16.2 *The general theory for nth order equations 152
Exercises 153
Part III Linear second order equations with variable coefficients 157
17 Reduction of order 159
Exercises 162
18 *The variation of constants formula 164
Exercises 168
19 *Cauchy-Euler equations 170
19.1 Two real roots 171
19.2 A repeated root 171
19.3 Complex roots 173
Exercises 174
20 *Series solutions of second order linear equations 176
20.1 Power series 176
20.2 Ordinary points 178
20.3 Regular singular points 183
20.4 Bessel's equation 187
Exercises 195
Part IV Numerical methods and difference equations 199
21 Euler's method 201
21.1 Euler's method 201
21.2 An example 203
21.3 *Matlab implementation of Euler's method 204
21.4 Convergence of Euler's method 206
Exercises 209
22 Difference equations 213
22.1 First order difference equations 213
22.2 Second order difference equations 215
22.3 The homogeneous equation 215
22.4 Particular solutions 219
Exercises 222
23 Nonlinear first order difference equations 224
23.1 Fixed points and stability 224
23.2 Cobweb diagrams 225
23.3 Periodic orbits 226
23.4 Euler's method for autonomous equations 227
Exercises 230
24 The logistic map 233
24.1 Fixed points and their stability 234
24.2 Periodic orbits 234
24.3 The period-doubling cascade 237
24.4 The bifurcation diagram and more periodic orbits 238
24.5 Chaos 240
24.6 *Analysis of $x_{n+1}=4 x_{n}\left(1-x_{n}\right)$ 242
Exercises 245
Part V Coupled linear equations 247
25 *Vector first order equations and higher order equations 249
25.1 Existence and uniqueness for second order equations 251
Exercises 252
26 Explicit solutions of coupled linear systems 253
Exercises 257
27 Eigenvalues and eigenvectors 259
27.1 Rewriting the equation in matrix form 259
27.2 Eigenvalues and eigenvectors 260
27.3 *Eigenvalues and eigenvectors with Matlab 266
Exercises 267
28 Distinct real eigenvalues 269
28.1 The explicit solution 270
28.2 Changing coordinates 271
28.3 Phase diagrams for uncoupled equations 276
28.4 Phase diagrams for coupled equations 279
28.5 Stable and unstable manifolds 281
Exercises 282
29 Complex eigenvalues 285
29.1 The explicit solution 285
29.2 Changing coordinates and the phase portrait 287
29.3 The phase portrait for the original equation 291
Exercises 292
30 A repeated real eigenvalue 295
$30.1 \mathbb{A}$ is a multiple of the identity: stars 295
$30.2 \mathbb{A}$ is not a multiple of the identity: improper nodes 295
Exercises 299
31 Summary of phase portraits for linear equations 301
31.1 *Jordan canonical form 301
Exercises 305
Part VI Coupled nonlinear equations 307
32 Coupled nonlinear equations 309
32.1 Some comments on phase portraits 309
32.2 Competition of species 310
32.3 Direction fields 311
32.4 Analytical method for phase portraits 314
Exercises 322
33 Ecological models 323
33.1 Competing species 323
33.2 Predator-prey models I 331
33.3 Predator-prey models II 334
Exercises 338
34 Newtonian dynamics 341
34.1 One-dimensional conservative systems 341
34.2 *A bead on a wire 344
34.3 Dissipative systems 347
Exercises 350
35 The 'real' pendulum 352
35.1 The undamped pendulum 352
35.2 The damped pendulum 356
35.3 Alternative phase space 358
Exercises 358
36 *Periodic orbits 360
36.1 Dulac's criterion 360
36.2 The Poinacré-Bendixson Theorem 361
Exercises 362
37 *The Lorenz equations 364
38 What next? 373
38.1 Partial differential equations and boundary value problems 373
38.2 Dynamical systems and chaos 374
Exercises 375
Appendix A Real and complex numbers 379
Appendix B Matrices, eigenvalues, and eigenvectors 382
Appendix C Derivatives and partial derivatives 387
Index 395

[^0]: Some of the chapters, and some sections within other chapters, are marked with an asterisk (*). These parts of the book contain material that either is more advanced, or expands on points raised elsewhere in the text.

