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Objective

� Our research is on real-time multi-agent robotic weed killing in partially
observed environments.

� We aim to ground our research in current work in the field.
� Towards this goal we will survey papers in multi-agent learning and note

relevant results.
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Paper 1

Learning for Multi-robot Cooperation in Partially Observable Stochastic
Environments with Macro-actions [Liu et al., 2017]
� Author: Miao Liu1, Kavinayan Sivakumar, Shayegan Omidshafiei, Christopher

Amato and Jonathan P. How
� Date: 2017
� Relevant Information: Details a framework for multi-agent reinforcement

learning for DecPOMDPs utilizing macro-actions. Demonstrates the
effectiveness of this framework for a search and rescue task performed by
aerial and ground robots. Assumed full observation of the victim location via
aerial vehicle but not the health status of victims.
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Observation 1

� We note that even current research in the field [Liu et al., 2017], assumes
knowledge of the positions of objects in the environment obtained from a
UAV.

� We aim to complete our task with only the observations obtained from
ground robots during operation in the field.
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Paper 2

The Dynamics of Reinforcement Learning in Cooperative Multi-agent
Systems [Claus and Boutilier, 1998]
� Author: Caroline Claus and Craig Boutilier
� Date: 1998
� Relevant Information: States that, in the multi-agent domain, greedy policies

from all the agents may not maximize the overall reward. This motivates
further work on coordination.
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Paper 3

Markov games as a framework for multi-agent reinforcement learning
[Littman, 1994]
� Author: Michael L. Littman
� Date: 1994
� Relevant Information: States that multi-agent RL converges to the optimal

policy for zero sum games. Shows that the problem may be formulated in a
minimax fashion.
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Paper 4

Multi-Agent Reinforcement Learning (MARL): a critical survey
[Shoham et al., 2003]
� Author: Yoav Shoham Rob Powers Trond Grenager
� Date: 2003
� Relevant Information: States that multi-agent RL also converges for

common-payoff games. Presents a survey of key directions in MARL: how
humans learn in context of other learners, vs. how agents in general should
learn.
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Observation 2

� We see that in contemporary literature [Shoham et al., 2003], our problem is
framed as a robot foraging task.
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Paper 5

Multi-Agent Reinforcement Learning (MARL): Independent Vs.
Cooperative Agents [Tan, 1993]
� Author: Ming Tan
� Date: 1993
� Relevant Information: Presents an outline of strategies for coordination

between agents in a wolf pack environment: coordinated sensing, experience
sharing, expert training from more experienced agents.
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Paper 6

A Comprehensive Survey of Multi-agent Reinforcement Learning (MARL)
[Busoniu et al., 2008]
� Author: Lucian Busoniu, Robert Babuska, and Bart De Schutter
� Date: 2008
� Relevant Information: Presents a comprehensive overview of the taxonomy of

MARL Algorithms with examples of algorithms from each category: Temporal
Difference RL, Game Theory, Direct Policy Search, cooperative vs.
competitive, static vs. dynamic.
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Paper 7

A junction-tree based learning algorithm to optimize network wide traffic
control: A coordinated multi-agent framework [Zhu et al., 2015]
� Author: Feng Zhu, H.M. Abdul Aziz, Xinwu Qian, Satish V. Ukkusuri
� Date: 2015
� Relevant Information: Details an algorithm for traffic control using

multi-agent RL. Utilizes a graph network model for the traffic environment,
and shows convergence for both cyclic and acyclic networks.
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Paper 8

Parallel Reinforcement Learning for Traffic Signal Control
[Mannion et al., 2015]
� Author: Patrick Manniona, Jim Duggana, Enda Howley
� Date: 2015
� Relevant Information: Details a solutions to a similar problem, but uses

parallel hierarchical reinforcement learning. In this work, multiple agents learn
in parallel, and share information with a master learner, increasing the rate of
exploration, and the learning rate.
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Paper 9

Adaptive group-based signal control by reinforcement learning
[Jin and Ma, 2015]
� Author: Junchen Jin, Xiaoliang Ma
� Date: 2015
� Relevant Information: Presents another examination of signal traffic control.

This work uses a group based RL approach, in which groups of agents
throughout the traffic network learn coordinated policies. It is shown here
that SARSA is more adaptive to dynamic conditions than Q learning for the
experiments considered.
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Paper 10

Decentralized Non-communicating Multi-agent Collision Avoidance with
Deep Reinforcement Learning [Chen et al., 2017]
� Author: Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P. How
� Date: 2017
� Relevant Information: Details a real-time collision avoidance strategy for the

multi-robot domain based on reinforcement learning. Here, a value network is
trained offline based on generated sample trajectories, and then a real-time
learning system, which can adapt to novel trajectories, is utilized. Does not
assume communication between agents but does assume observation of the
current position and velocity.
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Paper 11

Multi-agent Reinforcement Learning in Sequential Social Dilemmas
[Leibo et al., 2017]
� Author: Multi-agent Reinforcement Learning in Sequential Social Dilemmas
� Date: 2017
� Relevant Information: Details an analysis of modern multi-agent

reinforcement learning algorithms in terms of the social aspects of the policy.
Characterizes the policy of wolf pack environments in terms of cooperation
and defection. It is shown that for this environment effective cooperative
policies take longer to learn.
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Paper 12

Multiagent cooperation and competition with deep reinforcement learning
[Tampuu et al., 2017]
� Author: Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin,

Kristjan Korjus, Juhan Aru, Jaan Aru, Raul Vicente
� Date: 2017
� Relevant Information: Details a deep Q learning approach to training Pong

where both agents learn simultaneously. Shows that this simultaneous
learning architecture improves the robustness of the trained policy to
opponents with varying policy structures.
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Paper 13

Reinforcement Learning in the Multi-Robot Domain [Matarić, 1997]
� Author: Maja J. Mataric
� Date: 1997
� Relevant Information: Details a practical implementation of Deep Q-Learning

for multi-robot learning on coordinated tasks. Solves a gathering problem
utilizing macro-actions and a reward function which forces the robots to
spread out over the environment.
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Observation 3

� We note that past work for [Matarić, 1997], multi-agent robot foraging
systems have used additive rewards over the rewards of the individual agents.

� This is a good starting point for our reward model.
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Paper 14

An algorithm for distributed reinforcement learning in cooperative
multi-agent systems [Lauer and Riedmiller, 2000]
� Author: Maja J. Mataric
� Date: 2000
� Relevant Information: Outlines a distributed approach to Q learning in which

all learning agents operate on the same problem. Each learner assumes the
other agents take optimal actions at every state. Does not include
coordination and does not guarantee convergence when there are multiple
optimal actions at each state.
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Paper 15

Cooperative multi-agent learning: The state of the art
[Panait and Luke, 2005]
� Author: Panait, Liviu and Luke, Sean
� Date: 2005
� Relevant Information: Surveys key directions in MAL including, team learning

for cooperative and non-cooperative agents, learning for cooperative vs.
general sum games, modeling of unknown agents, direct and indirect
communications, and challenges such as scalability.
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Paper 16

Packet routing in dynamically changing networks: A reinforcement learning
approach [Boyan and Littman, 1994]
� Author: Boyan, Justin A and Littman, Michael L
� Date: 1994
� Relevant Information: This problem examines packet routing in dynamic

networks, and uses a distributed Q learning algorithm to solve the problem.
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Paper 17

Multi-agent Bidirectionally-Coordinated Nets for Learning to Play
StarCraft Combat Games [Peng et al., 2017]
� Author: Peng, Peng and Yuan, Quan and Wen, Ying and Yang, Yaodong and

Tang, Zhenkun and Long, Haitao and Wang, Jun
� Date: 2017
� Relevant Information: Utilizes an actor critic deep Q-Learning approach for

StarCraft which treats the combat game as a zero sum problem between the
teams, and uses a bi-directional neural network to allow coordinated learning.
Trains one team given a model for the other. Shows high performance for
StarCraft.
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Observation 4

� We note that current work in multi agent learning [Peng et al., 2017], has
used actor-critic networks to achieve high performance.

� This will be an interesting approach to examine for our problem.
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Paper 18

A distributed reinforcement learning scheme for network routing
[Littman and Boyan, 1993]
� Author: Littman, Michael and Boyan, Justin
� Date: 1993
� Relevant Information: A previous version of the above algorithm for packet

routing in dynamic networks.
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Paper 19

Cooperative Multi-Agent Control Using Deep Reinforcement Learning
[Gupta et al., ]
� Author: Gupta, Jayesh K and Egorov, Maxim and Kochenderfer, Mykel
� Date: 2017
� Relevant Information: Outlines a framework for cooperative control using

deep reinforcement learning via deep deterministic policy gradient. Uses
parameter sharing between agents and shows effectiveness for a multi-walker,
water world, and pursuit evasion.
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Paper 20

Data-driven optimal consensus control for discrete-time multi-agent
systems with unknown dynamics using reinforcement learning method
[Zhang et al., 2017]
� Author: Zhang, Huaguang and Jiang, He and Luo, Yanhong and Xiao,

Geyang
� Date: 2017
� Relevant Information: Proposes a deep Q-Learning framework using

actor-critic for multi-agent coordination and shows its effectiveness in
simulation for multi-agent coordination.
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Paper 21

Multiagent reinforcement learning and self-organization in a network of
agents [Abdallah and Lesser, 2007]
� Author: Abdallah, Sherief and Lesser, Victor
� Date: 2007
� Relevant Information: Demonstrates the effectiveness of multi-agent

reinforcement learning for learning coordinated policies in a network of
agents. Uses self organization to dynamically restructure the network and
allows for effective distributed task allocation.
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Paper 22

Planning for large-scale multiagent problems via hierarchical decomposition
with applications to UAV health management [Chen et al., 2014]
� Author: Chen, Yu Fan and Ure, N Kemal and Chowdhary, Girish and How,

Jonathan P and Vian, John
� Date: 2014
� Relevant Information: Proposes an Multiagent Markov Decision Process

(MMDP) algorithm which dynamically allocates tasks to a network of agents
in order to maximize longterm reward. Tests the algorithm in a simulation for
multi-agent UAV health monitoring.
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Paper 23

Multi-Agent Reinforcement Learning with Reward Shaping for KeepAway
Takers [Devlin et al., 2010]
� Author: Devlin, Sam and Grzes, Marek and Kudenko, Daniel
� Date: 2010
� Relevant Information: Uses reward shaping for multi-agent reinforcement

learning and benchmarks the performance for a simulation of robot soccer.
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Paper 24

An Evolutionary Transfer Reinforcement Learning Framework for
Multi-Agent System [Hou et al., 2017]
� Author: Hou, Yaqing and Ong, Yew-Soon and Feng, Liang and Zurada, Jacek

M
� Date: 2017
� Relevant Information: Develops a novel framework for evolutionary transfer

reinforcement learning and shows improved performance for learning on
strategy games.
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Paper 25

Planning and acting in partially observable stochastic domains
[Kaelbling et al., 1998]
� Author: Kaelbling, Leslie Pack and Littman, Michael L and Cassandra,

Anthony R
� Date: 1998
� Relevant Information: Takes an approach to solving POMDPs which

optimizes over belief spaces to prune policy trees in order to maximize the
expected reward. Shows improved efficiency over previous approaches and
includes experiments with a hall following robot.
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Paper 26

Learning in behavior-based multi-robot systems: Policies, models, and
other agents [Mataric, 2001]
� Author: Matarić, Maja J
� Date: 2001
� Relevant Information: Outlines a survey of Behavior-Based control in the

context of multi-robot learning and planning. Shows how this methodology
allows effective learning of cooperative actions for a robot foraging problem.
Discusses methods including reward shaping in the spatial and temporal
domains, and imitation learning to improve performance.
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Paper 27

Simultaneous adversarial multi-robot learning [Bowling and Veloso, 2003]
� Author: Bowling, Michael and Veloso, Manuela
� Date: 2003
� Relevant Information: Outlines a variant of the WoLF algorithm called

GradWoLF, which uses gradient based policy iteration with variable learning
rate to perform multi-agent learning for adversarial tasks. Includes simulated
and real experiments on an adversarial multi-robot soccer task.
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Paper 28

Planning, learning and coordination in multiagent decision processes
[Boutilier, 1996]
� Author: Boutilier, Craig
� Date: 1996
� Relevant Information: Discusses strategies for coordinated multi-agent

planning. Assumes fully autonomous and decentralized agents, showing how
coordination strategies can be learned by planning over beliefs.
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Paper 29

Multiagent learning using a variable learning rate
[Bowling and Veloso, 2002]
� Author: Michael Bowling, Manuela Veloso
� Date: 2002
� Relevant Information: Presents an extension to the Win or Learn Fast

(WoLF) algorithm for variable learning rate in adversarial multi-agent learning
problems. This extension is based on Policy Hill Climbing (PHC) and extends
the WoLF algorithm to provide theoretical convergence guarantees.
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Paper 30

Adaptive Load Balancing: A Study in Multiagent Learning
[Schaerf et al., 1995]
� Author: Schaerf, Andrea and Shoham, Yoav and Tennenholtz, Moshe
� Date: 1995
� Relevant Information: Creates an adaptive learning controller for load

balancing in task allocation systems involving multiple agents. Uses a
reinforcement learning approach assuming fully decentralized agents with no
communication. Learns relevant parameters from local information to
construct the autonomous controller.
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Paper 31

Cooperative mobile robotics: Antecedents and directions [Cao et al., 1997]

� Author: Cao, Y Uny and Fukunaga, Alex S and Kahng, Andrew
� Date: 1997
� Relevant Information: Presents a survey of coordinated robotics including a

taxonomy of key research directions, as well as cited works from each. Details
popular problems such as foraging, traffic control, cooperative manipulation,
and pursuit evasion. Talks about several methodologies in the centralized,
decentralized domains, using varying communication architectures, and taking
approaches inspired by biology, learning methods, and behavioral control.
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Observation 5

� We note that the foraging task has long been considered a key problem in
collaborative robotics [Cao et al., 1997].
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Paper 32

If multi-agent learning is the answer, what is the question?
[Shoham et al., 2007]
� Author: Shoham, Yoav and Powers, Rob and Grenager, Trond
� Date: 2007
� Relevant Information: Breaks up the field of multi-agent reinforcement

learning into popular branches such as those concerned with computational
efficiency and tractability, those which describe how agents behave in shared
environments and how different learning methods perform for varying tasks,
and those which desire to proscribe strategies for learning in competitive and
non-competitive environments. Provides relevant literature for each subfield
and identifies key challenges and drawbacks within each.
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Paper 33

Learning for Decentralized Control of Multiagent Systems in Large,
Partially-Observable Stochastic Environments [Liu et al., 2016]
� Author: Liu, Miao and Amato, Christopher and Anesta, Emily P and Griffith,

John Daniel and How, Jonathan P
� Date: 2016
� Relevant Information: Details the PoEM algorithm, which solves

MacPOMDPs and has guaranteed convergence properties. Shows the
effectiveness of the method for a search and rescue task.
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Paper 34

Decentralized control of partially observable Markov decision processes
using belief space macro-actions [Omidshafiei et al., 2015]
� Author: Omidshafiei, Shayegan and Agha-Mohammadi, Ali-Akbar and

Amato, Christopher and How, Jonathan P
� Date: 2015
� Relevant Information: Proposes an algorithm, Masked Monte Carlo Search,

for solving Partially Observable Semi Markov Decision processes. This
algorithm combines random sampling with masking of unfavorable solutions
to balance exploration and exploitation. It is shown to perform well on a
package delivery application.
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Paper 35

Planning for decentralized control of multiple robots under uncertainty
[Amato et al., 2015]
� Author: Amato, Christopher and Konidaris, George and Cruz, Gabriel and

Maynor, Christopher A and How, Jonathan P and Kaelbling, Leslie P
� Date: 2015
� Relevant Information: Discusses MacDec-POMDPs and option-based

dynamic programming as a generalized learning framework for the
multi-robot domain. Demonstrates the feasibility of these methods for a
multi-robot warehouse task in situations with no communication,
communication within a local radius, and signal based communication.
Emergent cooperative strategies were observed to facilitate multi-robot
collaboration, motivating further work.
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Paper 36

Planning with macro-actions in decentralized POMDPs
[Amato et al., 2014]
� Author: Amato, Christopher and Konidaris, George D and Kaelbling, Leslie P
� Date: 2014
� Relevant Information: Describes a set of Mac-Dec-POMDP algorithms that

use policy search methods to plan in the multi-robot domain in uncertain
environments. Outlines the methodology behind this approach and details
experiments for the tasks of meeting in a grid and navigating with moving
obstacles.
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Paper 37

Graph-based Cross Entropy method for solving multi-robot decentralized
POMDPs [Omidshafiei et al., 2016]
� Author: Omidshafiei, Shayegan and Agha-Mohammadi, Ali-Akbar and

Amato, Christopher and Liu, Shih-Yuan and How, Jonathan P and Vian, John
� Date: 2016
� Relevant Information: Proposes a probabilistic method for solving

Dec-POMDPs which iteratively samples the policy space, and targets
sampled policies which maximize the estimate of the value function. Shows
improved performance over previous Dec-POMDPs methods for a package
retrieval and delivery task in the multi-robot setting.
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Paper 38

Robot motor skill coordination with EM-based reinforcement learning
[Kormushev et al., 2010]
� Author: Kormushev, Petar and Calinon, Sylvain and Caldwell, Darwin G
� Date: 2010
� Relevant Information: Does learning-based control via an RL approach with

dynamic motion primitives. Incorporates imitation learning and demonstrates
performance on a dynamic pancake flipping task.
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Paper 39

Stick-Breaking Policy Learning in Dec-POMDPs [Liu et al., 2015]
� Author: Liu, Miao and Amato, Christopher and Liao, Xuejun and Carin,

Lawrence and How, Jonathan P
� Date: 2015
� Relevant Information: Introduces a novel exploration method for Bayesian

reinforcement learning realized by defining an augmented MDP framework
which includes the probability of exploring at each state, and optimizing over
this augmented framework.
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Paper 40

Decentralized control of partially observable Markov decision processes
[Amato et al., 2013]
� Author: Amato, Christopher and Chowdhary, Girish and Geramifard, Alborz

and Ure, N Kemal and Kochenderfer, Mykel J
� Date: 2015
� Relevant Information: Notes a key and relevant result, which is that in

factored DecMDPs which are observation, transition, and reward
independent, the overall reward may be optimized by optimizing each agent’s
local reward.
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Observation 6

� From previous work, [Amato et al., 2013], we note that a factored MDP
approach to the foraging problem is guaranteed to be optimal in transition,
observation, and reward independent factorizations, where the total reward is
the sum of each agent’s local reward [Amato et al., 2013].

McAllister (University of Illinois) wmcalli2@illinois.edu November 21, 2017 48 / 67



Observation 7

� Based on our review, we believe that a factored MDP actor-critic approach,
where the critic network is decentralized, and the actor network is centralized,
will be effective for this problem.

� We will now examine literature on actor-critic methods and applications.
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Paper 41

Online actor-critic algorithm to solve the continuous-time infinite horizon
optimal control problem [Vamvoudakis and Lewis, 2010]
� Author: Vamvoudakis, Kyriakos G and Lewis, Frank L
� Date: 2010
� Relevant Information: This paper uses a policy iteration scheme for optimal

control of continuous time affine nonlinear systems. They demonstrate
improvements over previous methods for known system dynamics.
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Paper 42

Bayesian policy gradient and actor-critic algorithms
[Ghavamzadeh et al., 2016]
� Author: Ghavamzadeh, Mohammad and Engel, Yaakov and Valko, Michal
� Date: 2016
� Relevant Information: This paper presents a survey of Bayesian actor-critic

methods, showing experiments for a random walk problem, alongside
mountain car and ship-steering problems.
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Paper 43

Bayesian actor-critic algorithms [Ghavamzadeh and Engel, 2007]
� Author: Ghavamzadeh, Mohammad and Engel, Yaakov
� Date: 2007
� Relevant Information: This paper presents a preliminary version of the

previous work with the fundamental theory and the random walk experiments.
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Paper 44

Actor-critic algorithms [Konda and Tsitsiklis, 2000]
� Author: Konda, Vijay R and Tsitsiklis, John N
� Date: 2000
� Relevant Information: This paper presents a survey of actor-critic algorithms,

alongside convergence results.
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Paper 45

Learning continuous control policies by stochastic value gradients
[Heess et al., 2015]
� Author: Heess, Nicolas and Wayne, Gregory and Silver, David and Lillicrap,

Tim and Erez, Tom and Tassa, Yuval
� Date: 2000
� Relevant Information: This paper presents a learning-based control

framework using policy gradient algorithms which learns model and control
parameters. Experiments in robot environments with various robotic
platforms are presented in simulation.
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Paper 46

Reinforcement learning for humanoid robotics [Peters et al., 2003]
� Author: Peters, Jan and Vijayakumar, Sethu and Schaal, Stefan
� Date: 2003
� Relevant Information: This paper derives a natural actor-critic algorithm for

learning-based control and tests it on a humanoid robot.

McAllister (University of Illinois) wmcalli2@illinois.edu November 21, 2017 55 / 67



Paper 47

Policy gradient methods for robotics [Peters and Schaal, 2006]
� Author: Peters, Jan and Schaal, Stefan
� Date: 2006
� Relevant Information: This paper presents a survey of policy gradient

methods for humanoid robots. Experiments toward motor primitive learning
for baseball are also included.
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Paper 48

Interactive Policy Learning through Confidence-Based Autonomy
[Chernova and Veloso, 2009]
� Author: Chernova, Sonia and Veloso, Manuela
� Date: 2009
� Relevant Information: This paper presents a policy learning framework based

on a confidence estimate, providing the algorithm with a means to utilize
demonstration data when confidence is low.
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Paper 49

supervised actor-critic reinforcement learning [Barto, 2004]
� Author: Barto, MTRAG
� Date: 2004
� Relevant Information: This paper presents a survey of supervised actor-critic

reinforcement learning, and experiments for a ship steering task, alongside
control of a robot arm.
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Paper 50

Deterministic policy gradient algorithms [Silver et al., 2014]
� Author: Silver, David and Lever, Guy and Heess, Nicolas and Degris, Thomas

and Wierstra, Daan and Riedmiller, Martin
� Date: 2014
� Relevant Information: This paper presents a survey of deterministic policy

gradient algorithms. Experiments in bandit problems, mountain car and
pendulum environments, and control of an octopus arm are presented.
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