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Abstract— This paper presents a novel Model Reference
Adaptive Control framework utilizing Gaussian Processes.
Previous work focused on a Radial Basis Function Network
approach which was not robust to model dynamics and which
relied on pre-initialized centers for the Radial Basis Functions
within the domain of operation. The Gaussian Process approach
adapts to stochastic dynamics and adjust with model, without
relying on pre-initialized information. This architecture was
demonstrated on the Wing-Rock problem and shown to work
successfully even when the system is driven outside the normal
domain of operation.

I. INTRODUCTION

Model Reference Adaptive control is useful in a wide
variety of situations where there is significant uncertainty
in the system model. Previous approaches utilized Radial
Basis Functions, which need to be pre-allocated with centers
within the domain of operation, and are not robust to large
changes in operating conditions. This paper presents a novel
architecture which utilizes Gaussian Processes for Model
Reference Adaptive Control. In this approach, the uncertainty
is encoded in the Gaussian process model and the architec-
ture adjusts to changes in system dynamics without relying
on pre-allocated information. This paper provides bounds
on stability for this architecture as well as demonstrates its
validity and improvement over the Radial Basis Function
approach for the Wing Rock Problem.

II. APPROXIMATE MODEL INVERSION BASED MRAC

First consider the system described below:

ẋ1 (t) = x2 (t) (1)

ẋ2 (t) = f
(
x (t)

)
+ b

(
x (t)

)
δ (t) (2)

We define a model in terms of the psuedoinput, υ, and
the approximate inversion model, f̂ (x) + b̂ (x) δ (t). The
transformed system is shown below.

ẋ1 (t) = x2 (t) (3)

ẋ2 (t) = υ +
(
f − f̂

)
+
(
b− b̂

)
δ (t) (4)
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The input δ is then defined terms of the parameters just
mentioned.

δ (t) = b̂−1 (x)
(
υ − f̂ (x)

)
(5)

The model is then rewritten as.

ẋ1 (t) = x2 (t) (6)

ẋ2 (t) = υ +
(
f − f̂

)
+
(
b− b̂

)
b̂−1

(
υ − f̂ (x)

)
(7)

It is trivial to see this will recover the old model as follows.

ẋ1 (t) = x2 (t) (8)

ẋ2 (t) = f (x) + b (x) · δ (t) (9)

We will write the system in terms of an updated state z,
which includes the state space as well as our input δ.

z =
[
xT1 xT2 δT

]
(10)

We define the function ∆ as follows.

∆ (z) =
(
f − f̂

)
+
(
b− b̂

)
b̂−1

(
υ − f̂ (x)

)
(11)

The system can then be rewritten in terms of this parameter.

ẋ2 (t) = υ (z) + ∆ (z) (12)

The updated matrix form is as below.{
ẋ1 (t) = x2 (t)

ẋ2 (t) = υ (z) + ∆ (z)

}
(13)

We now write the whole system in matrix form.

ẋ =

[
0 I
0 0

]
· x+

[
0
I

]
· [υ + ∆] (14)

The psuedoinput is defined below.

υ = υpd + υrm − υad (15)

This includes a proportional differential control, as well as
a reference model and an adaptive term. We define the
proportional differential control in terms of the error.

υpd =
[
−K1 −K2

]
· e (16)

e =

[
e1
e2

]
=

[
x1 − x1,rm
x2 − x2,rm

]
(17)



The psuedoinput then becomes.

υ =
[
−K1 −K2

]
e+ υrm − υad (18)

The psuedoinput for the reference model will be made use
of below.

υ =
[
−K1 −K2

]
e+ ẋrm − υad, υrm = ẋrm (19)

We desire an expression for the error. We start with the
system below.[

ẋ1 − ẋ1,rm
ẋ2

]
=

[
0 I
0 0

]
·
[
x1 − x1,rm
x2 − x2,rm

]
+

[
0
I

]
· [υ + ∆]

(20)

Using the expression for the pseudoinput this expands[
ẋ1 − ẋ1,rm

ẋ2

]
=

[
0 I
0 0

]
·
[
x1 − x1,rm
x2 − x2,rm

]
+

[
0
I

]
· [−K1e1 −K2e2 + υrm − υad + ∆]

(21)

We then separate out the psuedoinput for the reference
model.[

ẋ1 − ẋ1,rm
ẋ2

]
=

[
0 I
0 0

]
·
[
x1 − x1,rm
x2 − x2,rm

]
+

[
0
I

]
· [−K1e1 −K2e2 − υad + ∆] +

[
0

ẋ2,rm

]
(22)

Moving this to the other side yields the desired relation for
the error.

ė =

[
ẋ1 − ẋ1,rm
ẋ2 − ẋ2,rm

]
=

[
0 I
0 0

]
· e

+

[
0
I

]
· [−K1e1 −K2e2 − υad + ∆]

(23)

We simplify this below.

ė =

[
0 I
−K1 −K2

]
· e+

[
0
I

]
· [∆− υad] (24)

We then simplify the error equation in terms of the matrices
A and B.

ė = A · e+B · [∆− υad] (25)

A =

[
0 I
−K1 −K2

]
, B =

[
0
I

]
(26)

We will now show that the system is stable with this
architecture. Consider the candidate Lyupanov function V.

V =
1

2
eTPe (27)

The time differential of this function is a known result.

V̇ =
1

2

[
ėTPe+ eTP ė

]
(28)

Utilizing the expression for the time derivative of the error.

V̇ = 1
2

(
Ae+B (∆− υad)

)T
Pe

+ 1
2e
TP
(
Ae+B (∆− υad)

) (29)

We separate the terms dependent on A and B. We choose
K1 and K2 such that A is Hurwitz and the system is stable.

V̇ = 1
2

(
(Ae)

T
Pe+ eTP (Ae)

)
+ 1

2

((
B (∆− υad)

)T
Pe+ eTP

(
B (∆− υad)

)) (30)

We evaluate the transpose

V̇ = 1
2

(
eTATPe+ eTPAe

)
+ 1

2

(
BTPe+ eTPB

)
(∆− υad)

(31)

Because A is Hurwitz, we use the Lyupanov Equation along
with the fact that BTPe is scalar.

V̇ = 1
2e
T
(
ATP + PA

)
e

+ 1
2

(
BTPe+

(
BTPe

)T)
(∆− υad)

(32)

The final expression for the time derivative is shown below.

V̇ = −1

2
eTQe+

(
BTPe

)
(∆− υad) (33)

If we find an expression for ∆ then we arrive at the result.

V̇ = −1

2
eTQe,∆ = υad (34)

III. ADAPTIVE CONTROL USING GP REGRESSION

In the previous section, we successfully determined a
model reference adaptive control architecture to ensure sys-
tem stability while tracking the desired reference signal.
However, we did not account of the stochastic nature of the
model itself. This section details how a Gaussian Process
framework is used to capture the uncertainty in the model
and the to calculate the best estimate of the psuedoinput for
the observed system states.

We model the uncertainty, ∆, as a Gaussian Process.

∆ (z) ∼ GP
(
m (z) , k

(
z, z′

))
(35)

In this case, k
(
z, z′

)
, is a real positive definite kernel

function, and where the mean is assumed to lie in the kernel
space. This space of functions is a Hilbert space, and is
defined such that all functions within the space have a finite
norm written in terms of kernel basis functions.

g ∈ H : ‖g‖2H =
∑
i

∑
j

〈
αiψ (zi) , αjψ

(
zj
)〉

(36)

Using the fact that the kernel is defined as an inner product
of basis functions.

‖g‖2H =
∑
i

∑
j

αiαj

〈
ψ (zi) , ψ

(
zj
)〉

(37)

‖g‖2H =
∑
i

∑
j

αiαjk
(
zi, zj

)
(38)

We see that the above expression is indeed finite.



A. GP Regression and Reproducing Kernel Hilbert Spaces

Let Z be the set of state measurements.

Zτ = {z1, ..., zτ} (39)

This set defines a covariance matrix which is written in terms
of the kernel functions as below.

Kij = k
(
zi, zj

)
(40)

For each state measurement, the observed output is given by
the mean for each sample plus a Gaussian noise term ε.

yzi = m (zi) + εi, εi ∼ N
(

0, ω2
)

(41)

Therefore, the state measurements a transformed to observed
system outputs, and our desire is to extract the state data from
this measurement.

Zτ = {z1, ..., zτ} → y = {y1, ..., yτ}T (42)

We choose a Gaussian distribution for our kernel functions,
as these are valid basis which map into an infinite dimen-
sional space.

k
(
z, z′

)
= e

−‖z−z′‖
2µ2


(43)

We know that each kernel function can be written in terms
of inner products of bases in the kernel space.

k
(
zi, zj

)
=
〈
ψ (zi) , ψ

(
zj
)〉

(44)

This allows us to wright the desired measurement m(z) in
terms of the bases vectors weighted by a vector β. We rewrite
this infinite dimensional product in terms of a sum of inner
products in the kernel space, which are of finite dimensional.

m (z) = βTψ (z) =

n∑
i=1

βj
〈
ψ (zi) , ψ (z)

〉
(45)

Each new data point zτ+1 will lead to a resultant update
in the posterior Gaussian distribution for the data. Each
new observation yτ+1 is jointly distributed with the previous
observation sequence yτ .[

yτ
yτ+1

]
∼ N

0,

[
K (Zτ , Zτ ) + ω2I kzτ+1

kTzτ+1
k∗zτ+1

]
(46)

This distribution is written in terms of K, the covariance
matrix up to time τ , in terms of kzτ+1

, the joint covariance of
the new measurement with that of the previous sequence, and
in terms of, k∗zτ+1

, the covariance of the new measurement.

kzτ+1
= K (Zτ , Zτ ) (47)

k∗zτ+1
= k (zτ+1, zτ+1) (48)

It is known that the conditional distribution of the latest
observation given the previous observation sequence is also

Gaussian.

P
(
yτ+1|Zτ , yτ , zτ+1

)
∼ N

(
m̂τ+1, Σ̂τ+1

)
(49)

This distribution is written in terms of the best estimate m̂τ+1

and the error covariance Σ̂τ+1.

m̂τ+1 = βTτ+1kzτ+1
(50)

Σ̂τ+1 = k∗zτ+1
− kTzτ+1

Cτkzτ+1
(51)

These in tern involve the inverse covariance of the observa-
tion sequence, Cτ , and the product of this term with the new
observation, βτ+1.

Cτ =
(
K (Zτ , Zτ ) + ω2I

)−1
(52)

βτ+1 = Cτyτ (53)

As one can observe from the constants above, the inverse
must be computed in this scenario. Because computing the
inverse is costly, we will try to expedite computation by
pruning the space of basis functions while maintaining an
effective state estimate given all the current data.

B. GP Bayesian Nonparametric Model-Based MRAC

We now discuss how the psuedoinput is computed based
on the data. Recall that the adaptive psuedoinput is the
only thing that is required to drive the error to zero, given
the model discussed in the previous section. We desire
an adaptive psuedoinput which is modeled by a Gaussian
process.

υad (z) ∼ GP
(
m̂ (z) , k

(
z, z′

))
(54)

We define the coefficient ατ to be the stochastic projection
of the new data onto the old within the kernel space, as given
by the known best estimate for the Gaussian process.

ατ = K−1Zτ kzτ+1 (55)

We define the length of the residual γτ+1, to be the distance
between the basis of the new data point, and the sum of the
projections onto the other bases functions as given by the
product of the coefficients α with each basis.

γτ+1 = min
αi

∥∥∥∥∥∥
τ∑
i=1

αiψ (zi)− ψ (zτ+1)

∥∥∥∥∥∥
2

(56)

Matching the components of this expression with the param-
eters in the Gaussian process defined above, we arrive at an
expression for γτ+1 which includes the known parameters.

γτ+1 = k∗τ+1 − kTzτ+1
ατ (57)

Our algorithm will then prune the basis functions such that
those with the maximum distance from the previous bases
will be chosen, ensuring that the basis functions span the
space as well as possible. The algorithm which realizes this
is Csato’s Algorithm [2], an algorithm is now popular for
the realization of Gaussian Process Estimators.



IV. ANALYSIS OF STABILITY

A. Stochastic Stability Theory for Switched Systems

We begin by considering the stochastic differential equa-
tion below, which represents the state in terms of a perturba-
tion from the reference model actuated via a Weiner process
ζ (t).

dx (t) = F
(
t, x (t)

)
dt+Hσ

(
t, x (t)

)
dζ (t) (58)

The dimensionality of this equation is detailed below.

x ∈ Rns , ζ (t) ∈ Rn2 , σ (t) ∈ N (59)

F (t, x) ∈ Rns , Hσ (t, x) ∈ Rns×n2 (60)

Finally, we initialize the process as follows.

x (0) = 0, F (t, 0) = 0, Hσ (t, 0) = 0 (61)

For the following analysis, we assume that the functions F
and Hσ satisfy the following Lipschitz criteria.∥∥F (t, x)− F (t, y)

∥∥+
∥∥Hσ (t, x)−Hσ (t, y)

∥∥
≤ B ‖x− y‖ (62)

The following definitions introduce the stability bounds
which we desire to prove our Model Reference Adaptive
Control Architecture will realize.
Definition 1: The process x(t) is mean square ultimately
bounded uniformly in σ if:

∃k ∈ R : ∀ (t, σ, xo) , lim
t→∞

Exo

[∥∥x (t)
∥∥2] ≤ k (63)

Definition 2: A process x(t) is exponentially means square
ultimately bounded uniformly in σ if:

∃ (k, c, α) : ∀ (t, σ, xo) ,

lim
t→∞

Exo
∥∥x (t)

∥∥2 ≤ k + c‖xo‖2e−α (64)

Keeping in mind the above definitions, we will analyze the
stability of the system governed by the above stochastic
differential equation. We will define a Lyupanov function
in terms of the error and a positive definite matrix P. This
will ensure system stability if A is Hurwitz.

V (t, x) =
1

2
eTPe, P > 0 (65)

First, we compute the differential generator for the function
V (t, x) is:

d[V (t,x)]
dt =

∂[V (t,x)]
∂t +

∑
j

Fj (t, x)
∂[V (t,x)]
∂xj

+ 1
2

∑
i,j

[
HσH

T
σ

]
ij

(t, x)
∂2[V (t,x)]
∂xj∂xi

(66)

The following lemma is taken as a corollary to that presented
in [3].
Lemma 1: Let x(t) satisfy the above stochastic differential
equation and V (t, x) be the class of function which are
twice continuously differentiable with respect to x and once

continuously differentiable with respect to t. If:

∃ (k1, k2) :
dE
[
V (t, x)

]
dt

≤ k1 − k2V (t, x) (67)

Then,

∀t ≥ 0,

ExoV (t, x) ≤ V (0, xo) e
−k2t + |k1|

k2

(
1− e−k2t

) (68)

The following theorem proves ultimate boundedness for the
stochastic differential equation described above.
Theorem 1: Let x(t) be a solution to the above stochastic
differential equation, and V (t, x) be the class of function
which are twice continuously differentiable with respect to
x and once continuously differentiable with respect to t. If:
Assumption 1:

∀
(
α1 ∈ R, c1 ∈ R+

)
,−α1 + c1‖x‖2 ≤ V (t, x) (69)

Assumption 2:

∀ (βσ, c2) ,
dEV (t, x)

dt
≤ βσ − c2V (t, x) (70)

Proof: With k1 = βσ and k2 = c2, Lemma 1 yields:

Exo

[
V
(
t, x (t)

)]
≤

V (0, xo) e
−c2t + |βσ|

c2

(
1− e−c2t

) (71)

Taking the limit of both sides yields a bound for the
differential generator.

lim
t→∞

ExoV
(
t, x (t)

)
≤ lim
t→∞

[
V (0, xo) e

−c2t + |βσ|
c2

(
1− e−c2t

)] (72)

lim
t→∞

Exo

[
V
(
t, x (t)

)]
≤ |βσ|

c2
(73)

By Assumption 1:

−α1 + c1‖x‖2 ≤ V (t, x) (74)

Therefore,

−α1 + c1‖x‖2 ≤ V (t, x)⇒ ‖x‖2 ≤ V (t, x)

c1
+
α1

c1
(75)

This implies,

Exo

[
‖x‖2

]
≤
Exo

[
V (t, x)

]
c1

+
α1

c1
(76)

Taking the limit of both sides and simplifying yields a bound
on the expectation of x.

lim
t→∞

[
Exo

[
‖x‖2

]]
≤ lim
t→∞

[
Exo

[
V (t, x)

]
c1

+
α1

c1

]
(77)

lim
t→∞

[
Exo

[
‖x‖2

]]
≤ |βσ|

c2
+
α1

c1
(78)

This shows that the process is mean squared ultimately



bounded uniformly in σ.

lim
t→∞

[
Exo

[
‖x‖2

]]
≤ K,K = max

σ

(
|βσ|
c2

+
α1

c1

)
(79)

If in addition.
Assumption 3:

V (0, x) ≤ c3‖xo‖2 + α2 (80)

Since,

Exo

[
V
(
t, x (t)

)]
≤ V (0, xo) e

−c2t + |βσ|
c2

(
1− e−c2t

) (81)

This implies,

Exo

[
V
(
t, x (t)

)]
≤
(
c3‖xo‖2 + α2

)
e−c2t + |βσ|

c2

(
1− e−c2t

) (82)

Finally, since.

Exo

[
‖x‖2

]
≤
Exo

[
V (t, x)

]
c1

+
α1

c1
(83)

We can change this bound to,

Exo

[
‖x‖2

](
c3
c1
‖xo‖2 + α2

c1

)
e−c2t + |βσ|

c2

(
1− e−c2t

)
+ α1

c1

(84)

Since the second term is monotonically increasing, the pre-
vious bound shows that the system is exponentially means
square uniformly bounded in σ.

Exo

[
‖x‖2

]
≤
(
c3
c1
‖xo‖2 +

α2

c1

)
e−c2t +K (85)

K =
|βσ|
c2

+
α1

c1
(86)

B. Analysis of Stability for Stochastic System

The uncertain model is described here as a perturbation
from the reference model state via a Weiner process.

∆ (z) ∼ m
(
z (t)

)
+Gσ

(
t, z (t)

)
dξ (87)

The adaptive psuedoinput is described via a Gaussian process
based on state data. The best psuedoinput is the estimator
given by the mean of this process after it has been updated
with all the current data.

vad (z) ∼ GP
(
m̂σ (z) , k

(
z, z′

))
⇒ v̂ad (z) = m̂σ (z)

(88)

We consider the familiar differential equation governing the
error from the previous section Approximate Model Based
Inversed Based MRAC.

ė = Ae+B
[
vad (z)−∆ (z)

]
(89)

This is rewritten here as a stochastic differential equation for
the error involving the uncertainty in the state and the current

estimate for the pseudoinput.

de = A · e · dt

+B ·
((

m̂σ (z)−m
(
z (t)

))
· dt+Gσ

(
t, z (t)

)
· dξ
)
(90)

We define an operator representing the difference between
the state and the estimate.

εσm (z) =
(
m̂σ (z)−m

(
z (t)

))
(91)

The stochastic differential equation for the error is then
shown in simplified form below.

de = Aedt+B
[
εσm (z) dt+Gσdξ

]
(92)

Now, we will provide a bound on the model error given
by
∥∥∆ (z)− m̂σ (z)

∥∥. We start with the following theorem
which is given in [4].
Theorem 2: Define the pseudometric:

dG (t, s) =

√
E
[∣∣Gσdξ (t)−Gσdξ (s)

∣∣2] (93)

Let N(T, d, υ) be the υ-covering number of the space, then
the υ-entropy of the space (T, d) is given by:

H (T, d, υ) = logN (T, d, υ) (94)

Let D(t) by the diameter of the space T with respect to the
metric dG. Then,

E sup
t∈T

Gσdξ (s) ≤ C
D(T )∫
0

H
1
2 (T, d, υ) dυ (95)

is a valid bound for the space.
We now prove a corollary which bounds the above metric in
a manner more useful for our purposes.
Corollary 3: Let the covariance kernel k : Dx × Dx →
R of the zero mean Gaussian Process

{
Gσdξ (s)

}
t∈T be

Gaussian. The if Dx ⊂ Rd is a compact set, then:

∃c′ ∈ R+ :
∥∥Gσdξ (s)

∥∥ a.s.≤ c′ (96)

Proof: Proof: The kernel operator is defined as follows.

k
(
t, t′
)

= E
[
Gσdξ (t)Gσdξ

(
t′
)]

(97)

Therefore, the kernel operator can be used to rewrite the
pseudometric as below.

dG (t, s) =√
E
[
Gσdξ (t)Gσdξ (t) +Gσdξ (s)Gσdξ (s)

] (98)

dG (t, s) =
√
k (t, t) + k (s, s)− 2k (t, s) (99)

Since the kernel operator is axially symmetric, meaning:

(t, t) = k (s, s) = κ (100)

The pseudometric can be simplified again.

dG (t, s) =
√

2κ− 2k (t, s) =
√

2
√
κ− k (t, s) (101)



Since the kernel operator is upper bounded by the autocor-
relation.

∀
(
t, t′
)
∈ T, k

(
t, t′
)
≤ κ (102)

An upper bound for the pseudometric can be determined.

dG (t, s) ≤
√

2κ (103)

This implies that D(T ) =
√

2κ and the integral in Theorem
2 is always finite for this scenario.

Given all the previous results, we can now prove the
boundedness of the tracking error which we desire. We start
with the following theorem.
Theorem 4: Global Approximation Theorem: Let mσ (z)
and m̂σ (z) represent the state and state estimate as above.
Further let the infinity norm of y be:

‖y‖∞ ≤M
σ (104)

Then, ∥∥εσm (z)
∥∥ ≤ 2κ2Mσ

√
kmax

ω4
+
κkmaxM

σ

ω2
(105)

Where the maximum value of the kernel is defined in terms
of the centers for the estimation process cϑi .

kmax = max
i

∥∥ψ (zi)− ψ (cϑi)
∥∥
H
, cϑi ∈ Dx (106)

Proof: : Let the kernel matrix associated with mσ be
kij = τ−2k

(
zi, zj

)
and let the kernel matrix associated with

the bases for estimation be k̃ij = τ−2k
(
cυ(i), cυ(j)

)
.

We will use the following properties during this derivation.

A−1 +B−1 = B−1 (A+B)A−1 (a)
‖AB‖ ≤ ‖A‖ ‖B‖ (b)
‖Av‖ ≤ ‖A‖ ‖v‖ (c)

‖A+B‖ ≤ ‖A‖+ ‖B‖ (d)∥∥A−1∥∥ = 1
‖A‖ (e)

‖A‖ =
∥∥AT∥∥ (f)

A = PΛP−1 → λmin ≤ ‖A‖ ≤ λmax (g)
λmin (A+B) ≥ λmin (A) + λmin (B) (h)


(107)

We define the covariance matrices as below.{
Kij = k

(
zi, zj

)
K̃ij = k

(
cυi , cυj

) } (108)

Since ε is defined as the difference between the mean and
the estimate, we start by writing these parameters in terms
of the kernel functions.

m (z) =
1

τ

τ∑
i=1

αik (zi, z) =αT kz (109)

m̂σ (z) =
1

τ

τ∑
i=1

α̃ik (cυi , z) =α̃T k̃z (110)

The norm of ε is then the norm of the difference.∣∣m (z)− m̂σ (z)
∣∣ =

∥∥∥αT kz − α̃T k̃z∥∥∥ (111)

We now add and subtract α̃T kz .∣∣m (z)− m̂σ (z)
∣∣

=
∥∥∥αT kz − α̃T kz + α̃T kz − α̃T k̃z

∥∥∥ (112)

Factoring terms,∣∣m (z)− m̂σ (z)
∣∣

≤
∥∥∥∥(αT − α̃T ) kz + α̃T

(
kz − k̃z

)∥∥∥∥ (113)

The bound on the norm is then evaluated. Using properties
c and d.∣∣m (z)− m̂σ (z)

∣∣
≤
∥∥∥(αT − α̃T )∥∥∥ ‖kz‖+

∥∥α̃T∥∥∥∥∥∥(kz − k̃z)∥∥∥∥ (114)

Using property f.∣∣m (z)− m̂σ (z)
∣∣ ≤∥∥(α− α̃)

∥∥ ‖kz‖+ ‖α̃‖
∥∥∥∥(kz − k̃z)∥∥∥∥ (115)

We now have an expression for the desired bound in terms of
several known quantities, which we will proceed to compute
the bounds of. We start by reviewing the definitions of the
parameters α̃, and α.

α̃ =
(
τ−2K̃ + ω2I

)−1
y (116)

α =
(
τ−2K + ω2I

)−1
y (117)

Their difference is written as follows.

α̃− α

=
(
τ−2K̃ + ω2I

)−1
y −

(
τ−2K + ω2I

)−1
y

(118)

Factoring,

α̃− α

=

[(
τ−2K̃ + ω2I

)−1
−
(
τ−2K + ω2I

)−1] · y (119)

We now use property a,

A−1 +B−1 = B−1 (A+B)A−1 (120)

A and B are chosen as follows.

A = −
(
τ−2K + ω2I

)−1
(121)

B =
(
τ−2K̃ + ω2I

)−1
(122)

The expression for the difference is then written in terms of
a product of terms.

α̃− α =(
τ−2K̃ + ω2I

)−1
τ−2

(
K̃ −K

) (
τ−2K + ω2I

)−1
y

(123)



Now we compute the norm.

‖α̃− α‖

=

∥∥∥∥(τ−2K̃ + ω2I
)−1

τ−2
(
K̃ −K

) (
τ−2K + ω2I

)−1
y

∥∥∥∥
(124)

Using property e,

‖α̃− α‖ ≤

∥∥∥∥(τ−2K̃ − τ−2K)∥∥∥∥ ‖y‖∥∥∥∥(τ−2K̃ + ω2I
)

(τ−2K + ω2I)

∥∥∥∥ (125)

Factoring the constant τ out of the norm.

‖α̃− α‖ ≤

∥∥∥∥(K̃ −K)∥∥∥∥ ‖y‖
τ2
∥∥∥∥( K̃τ2 + ω2I

)∥∥∥∥∥∥∥∥(Kτ2 + ω2I
)∥∥∥∥ (126)

Using property h.

‖α̃− α‖ ≤

∥∥∥∥(K̃ −K)∥∥∥∥ ‖y‖
τ2λmin

(
K̃
τ2 + ω2I

)
λmin

(
K
τ2 + ω2I

) (127)

We now use property h.

λmin (A+B) ≥ λmin (A) + λmin (B) (128)

Because A and B are positive definite, so are their eigenval-
ues.

A > 0, B > 0→ λmin (A) > 0, λmin (B) > 0 (129)

Therefore, we transform property h to one that is more useful
here.

λmin (A+B) ≥ λmin (A) (130)

We now examine the bound of the difference of α̃− α and
simplify utilizing the above property.

‖α̃− α‖ ≤

∥∥∥∥(K̃ −K)∥∥∥∥ ‖y‖
τ2λmin (ω2I)λmin (ω2I)

(131)

Since ω2I is a diagonal matrix of ω2, its eigenvalues are ω2.

‖α̃− α‖ ≤

∥∥∥∥(K̃ −K)∥∥∥∥ ‖y‖
τ2ω4

(132)

We now bound the kernel, kz by the maximum kernel κ
normalized by the time τ .

‖kz‖ ≤
κ√
τ

(133)

We bound the observation y by that deduced from the infinity
bound given in the theorem.

‖y‖ ≤
√
τMσ (134)

The bound
∥∥(α− α̃)

∥∥ ‖kz‖ is the product of that for

∥∥(α− α̃)
∥∥ and ‖kz‖ previously deduced.

∥∥(α− α̃)
∥∥ ‖kz‖ ≤


∥∥∥∥(K̃ −K)∥∥∥∥ ‖y‖

τ2ω4


(
κ√
τ

)
(135)

Factoring the bound ‖y‖,∥∥(α− α̃)
∥∥ ‖kz‖ ≤(∥∥∥(K̃−K)
∥∥∥

τ2ω4

)(√
τMσ

) (
k√
τ

) (136)

We then simplify,

∥∥(α− α̃)
∥∥ ‖kz‖ ≤


κMσ

∥∥∥∥(K̃ −K)∥∥∥∥
τ2ω4

 (137)

This expression involves the bound
∥∥∥∥(K̃ −K)∥∥∥∥ which we

will now evaluate.∥∥∥K̃ −K∥∥∥2 =

τ∑
i=1

τ∑
j=1

(
k
(
zi, zj

)
− k

(
cυi , cυj

))2
(138)

We transform the difference of these kernels to an inner
product in the basis space.∥∥∥K̃ −K∥∥∥2 =

τ∑
i=1

τ∑
j=1

(
2
〈
ψ (zi)− ψ (cυi) , ψ

(
cυj
)〉)2 (139)

We now factor out the constant term.∥∥∥K̃ −K∥∥∥2 =

4
τ∑
i=1

τ∑
j=1

〈
ψ (zi)− ψ (cυi) , ψ

(
cυj
)〉2 (140)

We now transform the squared inner product to a sum of
squared norms and use property c.∥∥∥K̃ −K∥∥∥2 ≤

4
τ∑
i=1

τ∑
j=1

∥∥ψ (zi)− ψ (cυi)
∥∥2∥∥∥ψ (cυj)∥∥∥2 (141)

We now bound the sum by the maximum values of the norms
within. ∥∥∥K̃ −K∥∥∥2 ≤

4τ2 max
i

∥∥ψ (zi)− ψ (cυi)
∥∥2∥∥∥ψ (cυj)∥∥∥2 (142)

Each basis function is bounded by κ, so their square is
bounded by κ2 ∥∥∥ψ (cυj)∥∥∥2 ≤ κ (143)

As given in the squared norm of the difference of basis



functions ψ (zi) and ψ (cυi) is kmax.∥∥∥K̃ −K∥∥∥2 ≤ 4τ2κ2kmax (144)

We now rewrite the bound K̃ −K to incorporate these.∥∥∥K̃ −K∥∥∥ ≤ 2τκ
√
kmax (145)

The bound on α−α̃ is then written to incorporate the updated
bound on K̃ −K.

‖α− α̃‖ ‖kz‖ ≤
κMσ

∥∥∥K̃ −K∥∥∥
τω4

(146)

Plugging in the bound for K̃ −K,

‖α− α̃‖ ‖kz‖ ≤
κMσ

(
2τκ
√
kmax

)
τω4

(147)

Simplifying,

‖α− α̃‖ ‖kz‖ ≤
2κ2Mσ

√
kmax

ω4
(148)

We now have the desired bound on the first term in the bound
for ε. For the second, desire a bound on α̃. We start with the
expression for α̃.

‖α̃‖ ≤

∥∥∥∥∥
(

1

τ2
K̃ + ω2I

)−1∥∥∥∥∥ ‖y‖ (149)

Using property e,

‖α̃‖ ≤ ‖y‖∥∥∥∥( 1
τ2 K̃ + ω2I

)∥∥∥∥ (150)

Using property g.

‖α̃‖ ≤ ‖y‖

λmin

(
1
τ2 K̃ + ω2I

) (151)

We use property h and simplify as before.

‖α̃‖ ≤ ‖y‖
λmin (ω2)

(152)

Observing the minimum eigenvalues of Iω2 is ω2.

‖α̃‖ ≤
√
τMσ

ω2
(153)

Now, we compute the bound on
∥∥∥kz − k̃z∥∥∥. Writing this in

terms of a normalized vector of kernel differences,

∥∥∥kz − k̃z∥∥∥ =
1

τ

∥∥∥∥∥∥∥∥


k (z1, z)− k (cυ1 , z)
...

k (zτ , z)− k (cυτ , z)


∥∥∥∥∥∥∥∥ (154)

We now write this vector as a sum of inner products in the
kernel space.∥∥∥kz − k̃z∥∥∥ =

1

τ

τ∑
i=1

∥∥∥〈ψ (zi)− ψ (cυi) , ψ (z)
〉∥∥∥ (155)

The sum is bounded by τ times its maximum value.∥∥∥kz − k̃z∥∥∥ ≤ 1

τ

∥∥∥∥τ max
i

〈
ψ (zi)− ψ (cυi) , ψ (z)

〉∥∥∥∥ (156)

Factoring our constants,∥∥∥kz − k̃z∥∥∥ ≤
√
τ
τ max

i

∥∥ψ (z)
∥∥max

i

∥∥ψ (zi)− ψ (cυi)
∥∥ (157)

Bounding the norms by κ and kmax,∥∥∥kz − k̃z∥∥∥ ≤ κkmax√
τ

(158)

We now write the second term in the bound for ε as a product
of the bounds.

‖α̃‖
∥∥∥kz − k̃z∥∥∥ ≤ (√τMσ

ω2

)(
kkmax√

τ

)
(159)

Simplifying yields the desired expression.

‖α̃‖
∥∥∥kz − k̃z∥∥∥ ≤ kkmaxM

σ

ω2
(160)

We now write the bound for ε.∣∣m (z)− m̂σ (z)
∣∣ ≤ { ‖α− α̃‖ ‖kz‖

+ ‖α̃‖
∥∥∥kz − k̃z∥∥∥

}
(161)

Plugging in the bounds for these terms yields the desired
expression.∣∣m (z)− m̂σ (z)

∣∣ ≤ 2k2Mσ
√
kmax

ω4
+
kkmaxM

σ

ω2
(162)

Theorem 5: Consider the following system.{
ẋ1 (t) = x2 (t)

ẋ2 (t) = f
(
x (t)

)
+ b

(
x (t)

)
δ (t)

}
(163)

The control law is.

δ = b̂−1 (x)
(
υ − f̂ (x)

)
(164)

The psuedoinput is:

υ = υrm + υpd − υad (165)

Finally, the model uncertainty is given by a Gaussian process.

∆ ∼ GP (m, k) (166)

If the adaptive psuedoinput is given as:

υad = m̂σ (z) (167)

Where this estimate is the result of a Gaussian process
estimator as describe above. Then, we guarantee that the
system is mean square uniformly ultimately bounded a.s.
and proportion to the tolerance εtol.

Proof: Define the following stochastic candidate Lyu-



panov function:

V
(
e (t)

)
=

1

2
eT (t)Pe (t) , P > 0 (168)

We deduce the standard bound based on the eigenvalues of
P.

1

2
λmin (P ) ‖e‖2 ≤ V (e) ≤ 1

2
λmax (P ) ‖e‖2 (169)

We then write the differential generator in terms of the
Lyupanov function as before.

d[V (e)]
dt =

∂[V (e)]
∂t +

∑
j

[
Fj (t, x) +Hσ,ij (t, x) dξ

]∂[V (t,x)]
∂ej

+ 1
2

∑
i,j

[
HσH

T
σ

]
ij

(t, x)
∂2[V (e)]
∂ej∂ei

(170)

Recall the stochastic differential equation for the error.

de = Aedt+B
[
εσm (z) dt+Gσdξ

]
(171)

We can read off the parameters F and Hσ .

F (t, x) = Ae+Bεσm (z) , Hσ (t, x) = BGσ (172)

The differential generator is then written for the error equa-
tion as follows.

dE[V (e)]
dt =

∑
j

∂E[V (e)]
∂ej

[
Aej +B (εσm +Gσdξ)

]
+ 1

2

∑
i,j

[
BGσ(BGσ)

T
]
ij

∂2E[V (e)]
∂ej∂ei

(173)

We first consider the first term and note that the sum can be
removed. ∑

j

∂
[
V (e)

]
∂ej

=
∂V (e)

∂e
(174)

Then, it can be shown that this first term is just the time
derivative of the Lyupanov function V (t, x).

∂V (e)

∂e

[
Ae+B (εσm +Gσdξ)

]
=
∂V (e)

∂e

∂e

∂t
(175)

∂V (e)

∂e

[
Ae+B (εσm +Gσdξ)

]
=
∂V (e)

∂t
(176)

This is a known result from linear algebra.
∂V (e)
∂t = 1

2

(
Ae+B (εσm +Gσdξ)

)T
Pe

+ 1
2 + eTP

(
Ae+B (εσm +Gσdξ)

) (177)

The terms involving A and B are broken up.
∂V (e)
∂t = 1

2 (Ae)
T
Pe+ eTP (Ae)

+ 1
2

(
BTPe+ eTPB

)
(εσm +Gσdξ)

(178)

Next the transposes are evaluated.
∂V (e)
∂t = 1

2e
TATPe+ eTPAe

+ 1
2

(
BTPe+ eTPB

)
(εσm +Gσdξ)

(179)

Finally, the expression is factored.
∂V (e)
∂t = 1

2e
T
(
ATP + PA

)
e

+ 1
2

((
eTPB

)T
+ eTPB

)
(εσm +Gσdξ)

(180)

Now we use the Lyupanov equation and the fact that the
second set of terms is scalar.

−Q = ATP + PA,
(
eTPB

)T
= eTPB (181)

The first terms will simplify to that shown below.

∂V (e)

∂t
=

[
−1

2
eTQe+ eTPB (εσm +Gσdξ)

]
(182)

Now the second term can be written trivially in terms of the
trace.

1
2

∑
i,j

[
BGσ(BGσ)

T
]
ij

∂2[V (e)]
∂ej∂ei

= 1
2Tr

(
BGσ(BGσ)

T
P
) (183)

The final equation for the differential generator is below.
dV (e)
dt =

[
− 1

2e
TQe+ eTPB (εσm +Gσdξ)

]
+ 1

2Tr
(
BGσ(BGσ)

T
P
) (184)

We now desire a bound on the differential generator. We first
use the previous bound involving the eigenvalues.

1

2
λmin (P ) ‖e‖2 ≤ V (e) ≤ 1

2
λmax (P ) ‖e‖2 (185)

We examine the equation for the differential generator and
take the norm of the whole equation.

dV (e)
dt =

[
− 1

2e
TQe+ eTPB (εσm +Gσdξ)

]
+ 1

2Tr
(
BGσ(BGσ)

T
P
) (186)

dV (e)
dt ≤ −

1
2λmin (Q) · ‖e‖2 + 1

2 ‖P‖ · ‖BGσ‖
2

+ ‖PB‖ · ‖e‖ ·
(
‖εσm‖+ ‖Gσdξ‖

) (187)

We define the following constants.

c1 =
1

2
‖P‖ · ‖BGσ‖2, c2 = ‖PB‖ , c′ = ‖Gσdξ‖ (188)

The norm then simplifies as follows.
dV (e)
dt ≤
− 1

2λmin (Q) · ‖e‖2 + c2 · ‖e‖ ·
(
‖εσm‖+ c′

)
+ c1

(189)

From Theorem 4, we have the following bound on ε.

‖εσm‖ ≤ c3Mσ
√
kσmax + c4M

σkσmax (190)

The normed equation is further simplified.
dV (e)
dt ≤ −

1
2λmin (Q) · ‖e‖2 + c1

+c2 · ‖e‖ ·
(
c3M

σ
√
kmaxσ + c4M

σkmaxσ + c′
) (191)

We now define one further constant to simplify the equation

cσ5M
σ = c2

(
c3M

σ
√
kσmax + c4M

σkσmax + c′
)

(192)

The final equation is now written as a quadratic in the error,



which must be less than or equal to zero.

−1

2
λmin (Q) · ‖e‖2 + (cσ5M

σ) · ‖e‖+ c1 ≤ 0 (193)

The solution to this quadratic bounds the error,

‖e‖ ≥
cσ5M

σ +

√(
cσ5M

σ
)2

+ 2λminQc1

λminQ
(194)

The resultant bound on the differential generator bounds
stability as desired.

dV (e)

dt

a.s.
≤ 0 (195)

V. TRAJECTORY TRACKING IN PRESENCE OF WING
ROCK DYNAMICS IN AN UNKNOWN OPERATING DOMAIN

In this section, the paper validated the Gaussian Process
Model Reference Adaptive Control architecture for the Wing
Rock Problem, a nonlinear control problem encountered
during landing of aircraft [5]. The model was compared
against a fixed center Radial Basis Function approach and
the performance improvement was observed.

A. System Within Domain of Operation

This system performed more effectively than the Radial
Basis Function approach even within the domain of opera-
tion, showing less oscillations while maintaining low error
and high confidence.

B. System Driven Outside Domain of Operation

The two controllers were again compared when the Wing
Rock System is driven outside the domain of operation. Here,
the Gaussian Process MRAC architecture is significantly
better than the RBF approach, demonstrating that this archi-
tecture is much better at mitigating oscillations associated
with model uncertainty.

VI. CONCLUSION

The Gaussian Process Model Reference Adaptive Con-
trol Architecture which was demonstrated here provides a
more robust control framework for dynamical systems with
a significant amount of model uncertainty. This approach
improves over past methods, which relied on pre-allocated
information about the domain of operation, and were not
robust to changes in operating conditions. After introducing
the architecture used here, this paper provides a theoretical
framework for bounding the error in the model and proving
system stability. Experiments were then run which success-
fully demonstrated the improvement of this architecture over
previous methods.
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