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Abstract— For sector bounded nonlinear systems with un-
known control direction, a nonlinear PI or Nussbaum gain
controller is not sufficient for stability. This paper shows that
combining the nonlinear PI and Nussbaum gain will result in
a stable system.

I. INTRODUCTION

This paper explores a control problem where the sign of
the control, or control direction, is unknown. The common
way to handle such a problem is through the use of Nuss-
baum functions as control gains. Nussbaum functions are
defined as continuous functions N : R → R for which the
properties of (1) and (2) hold.

lim sup
ζ→±∞

1

ζ

ζ∫
0

N (s) ds = +∞ (1)

lim inf
ζ→±∞

1

ζ

ζ∫
0

N (s) ds = −∞ (2)

The author has previously shown that combining a nonlinear
PI controller with a Nussbaum gain can stabilize a perturbed
linear system such as (3), by using the control scheme
represented in (4) and (5) as long as max

{
ελ, ε (α+ λ)

}
<

1 and κ (·) is a Nussbaum function.{
ẋ = αx+ bu
εẏ = x− y

}
(3)

u = κ (z) y (4)

z =
1

2
y2 + λ

t∫
0

y2 (s) ds (5)

This paper extends the results of this work to explore the
robustness of the controller to ignored actuator dynamics as
seen in Figure 2 of [1]. Such a system is modeled in (6).{

ẏ = f (y) + bu
εu̇ = unom − u

}
(6)
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where unom is modeled for the unperturbed plant seen in
(7).

ẏ = f (y) + bunom (7)

In the following section, it will be shown that combining
nonlinear PI with a Nussbaum control gain, results in a
controller that is more robust than either technique by itself.

A. Nonlinear PI control: nominal case

Let the sector bounded non-linearity f(y) be defined as
follows.

f (y) = α (y) y (8)

α1 ≤ α (y) ≤ α1 ∀y ∈ R (9)

Lemma 1 Let the system be (7) with nonlinearity (8), (9).

ẏ = f (y) + bunom

f (y) = α (y) y α1 ≤ α (y) ≤ α1 ∀y ∈ R

Consider also the nonlinear PI controller of the form

unom = κ (z) y (10)

z =
1

2
y2 + λ

t∫
0

y2 (s) ds (11)

(λ > 0) with PI gain κ (z) ≡ β (z) cos (z) and β (·) a class
K∞ function. Then, for the closed loop system we have that
z, y, unom are bounded and lim

x→∞
y (t) = lim

t→∞
unom (t) = 0.

A function β (·) belongs to class K∞ if it is continuous,
strictly increasing with β (0) = 0 and lim

x→+∞
β (z) = +∞.

Proof: The proof is given in section 1.1 of [2].

II. NONLINEAR PI CONTROL: IGNORED ACTUATOR
DYNAMICS CASE

Theorem 1 Let the closed-loop system be given by (6),
(10), (11) with sector-bounded nonlinearity given by (8), (9).{

ẏ = f (y) + bu
εu̇ = unom − u

}
unom = κ (z) y

z =
1

2
y2 + λ

t∫
0

y2 (s) ds

f (y) = α (y) y α1 ≤ α (y) ≤ α1 ∀y ∈ R



If,
1) ε (λ+ α2) < 1
2) κ (z) = β (z) cos (z) with β (·) a K∞ function having

the property

lim
z→+∞

[
β (z + ε)

z
− cβ (z)

]
= +∞ (12)

then all closed loop signal are bounded and

lim
t→∞

y (t) = lim
t→∞

u (t) = lim
t→∞

unom (t) = 0.

Proof:
We begin with (5) and (7) (repeated below).

z = 1
2y

2 + λ
t∫
0

y2 (s) ds ẏ = f (y) + bu

We now differentiate z, substituting the expression for ẏ.

ż = yẏ + λy2 = y
(
f (y) + bu

)
+ λy2

We then factor common terms.

ż = byu+
(
f (y) + λy

)
y

We now use the expression for f(y).

f (y) = α (y) y

Substituting into the previous equation we arrive at ż.

ż = byu+
(
α (y) + λ

)
y2 (13)

We now define the function S to be the following.

S ≡ ε

2
u2 +

ε (α2 + λ)

b
uy +

`

2
y2 (14)

We then compute Ṡ as follows, first using the product rule.

Ṡ = εuu̇+
ε (α2 + λ)

b
[u̇y + ẏu] + `yẏ

We now substitute the expressions for u̇, ẏ from (6).

Ṡ = εuunom−uε

+ ε(α2+λ)
b

[
unom−u

ε y +
(
f (y) + bu

)
u
]

+`y
(
f (y) + bu

)
We factor in ε to cancel common factors.

Ṡ = u (unom − u)

+ (α2+λ)
b

[
(unom − u) y + ε

(
f (y) + bu

)
u
]

+`y
(
f (y) + bu

)
We substitute the expression for unom from (10).

Ṡ = u
(
κ (z) y − u

)
+ (α2+λ)

b

[(
κ (z) y − u

)
y + ε

(
α (y) y + bu

)
u
]

+`y
(
α (y) y + bu

)
We then expand terms.

Ṡ = κ (z)uy − u2

+ (α2+λ)
b

[
κ (z) y2 − uy + εα (y)uy + εbu2

]
+`y

(
α (y) y + bu

)

We group common factors of u2 and uy.

Ṡ = −
[
1− (α2 + λ) ε

]
u2 + κ (z)uy

− 1
b (α2 + λ)

(
1− εα (y)

)
uy

+ 1
b (α2 + λ)κ (z) y2 + `α (y) y2 + b`uy

We then add and subtract `ż using (13).

Ṡ = −
[
1− (α2 + λ) ε

]
u2 + κ (z)uy

− 1
b (α2 + λ)

(
1− εα (y)

)
uy

+`ż − `
[
byu+

(
α (y) + λ

)
y2
]

+ 1
b (α2 + λ)κ (z) y2 + `α (y) y2 + b`uy

We now cancel common terms.
Ṡ = −

[
1− (α2 + λ) ε

]
u2 + κ (z)uy

− 1
b (α2 + λ)

(
1− εα (y)

)
uy

+`ż − `λy2 + 1
b (α2 + λ)κ (z) y2

Rearranging (13), we have an expression for λy2.

ż = byu+
(
α (y) + λ

)
y2 ⇒ λy2 = ż − byu− α (y) y2

We substitute this expression in to arrive at the following.

Ṡ = −
[
1− (α2 + λ) ε

]
u2 + κ (z)uy

− 1
b (α2 + λ)

(
1− εα (y)

)
uy + `ż − `λy2

+ 1
bκ (z)α2y

2 + 1
bκ (z)

[
ż − byu− α (y) y2

]
Simplifying, we arrive at Ṡ.

Ṡ = −
[
1− (α2 + λ) ε

]
u2

− 1
b (α2 + λ)

(
1− εα (y)

)
uy − λ`y2

+ 1
b

(
α2 − α (y)

)
κ (z) y2 + `ż + 1

bκ (z) ż
(15)

The above equation for Ṡ may be written as a linear equation.

d
dt

[
S − 1

b

z(t)∫
0

(
κ (s) + b`

)
ds

]
= −wTΛ (y)w + 1

b

(
α2 − α (y)

)
κ (z) y2

(16)

Here, w is the state vector of (u, y).

w =
[
u y

]T
Λ(y) is defined to be the following matrix.

Λ (y) =[
1− ε (λ+ α2)

(λ+α2)(1−εα(y))
2b

∗ λ`

]
(17)

Where * denotes that the matrix is symmetric w.r.t. the main
diagonal.
We show the linear equation is correct by expanding the first
term.
−wTΛ (y)w = −

[
u y

]
·[

1− ε (λ+ α2) 1
2b (λ+ α2)

(
1− εα (y)

)
∗ λ`

]
·
[
u
y

]
We compute the first product.

−wTΛ (y)w =[
−u
(
1− ε (λ+ α2)

)
− y 1

2b (λ+ α2)
(
1− εα (y)

)
−u 1

2b (λ+ α2)
(
1− εα (y)

)
− yλ`

]T
·
[
u
y

]



We now compute the second.

−wTΛ (y)w =
−u2

(
1− ε (λ+ α2)

)
− uy 1

2b (λ+ α2)
(
1− εα (y)

)
−uy 1

2b (λ+ α2)
(
1− εα (y)

)
− y2λ`

Simplifying, we arrive at the following.

−wTΛ (y)w =
−u2

(
1− ε (λ+ α2)

)
− uy 1

b (λ+ α2)
(
1− εα (y)

)
− y2λ`

Adding terms, we arrive at the desired expression.

d
dt

[
S (u, y)− 1

b

z(t)∫
0

(
κ (s) + b`

)
ds

]
= −wTΛ (y)w + 1

b

(
α2 − α (y)

)
κ (z) y2

We want to constrain ` such that Λ(y) is positive definite.

Λ (y) = 1− ε (λ+ α2)
(λ+α2)(1−εα(y))

2b
(λ+α2)(1−εα(y))

2b λ`

 > 0

For this to be true the first principle minor must be positive.
This yields the following constraint.

1− ε (λ+ α2) > 0⇒ ε (λ+ α2) < 1

The second principle minor, computed via the determinant,
must also be positive.∣∣∣∣∣∣ 1− ε (λ+ α2)

(λ+α2)(1−εα(y))
2b

(λ+α2)(1−εα(y))
2b λ`

∣∣∣∣∣∣ > 0

The determinant is computed below.(
1− ε (λ+ α2)

)
(λ`)− 1

4b2
(λ+ α2)

2(
1− εα (y)

)2
> 0

We take the second term to the right hand side.(
1− ε (λ+ α2)

)
(λ`) >

1

4b2
(λ+ α2)

2(
1− εα (y)

)2
We arrive at one constraint on ` below.

` >

(
λ+ α2

b

)2 (
1− εα (y)

)2
4λ
(
1− ε (λ+ α2)

)
We now write S in terms of a linear equation using Λ′(y).

Λ′ (y) =

[
ε
2

1
2bε (λ+ α2)

1
2bε (λ+ α2) `

2

]
We then test this is valid by expanding the following.

S = wTΛ′ (y)w

=
[
u y

]
·

[
ε
2

1
2bε (λ+ α2)

1
2bε (λ+ α2) `

2

]
·
[
u
y

]
We compute the first product.

wTΛ′ (y)w =

[
ε
2u+ 1

2bε (λ+ α2) y
1
2bε (λ+ α2)u+ `

2y

]T
·
[
u
y

]

Then compute the second product.

wTΛ′ (y)w
= ε

2u
2 + 1

2bε (λ+ α2)uy + 1
2bε (λ+ α2)uy + `

2y
2

We finally arrive at the desired expression.

wTΛ′ (y)w =
ε

2
u2 +

1

b
ε (λ+ α2)uy +

`

2
y2

For S to be positive definite, Λ′(y) must be also.[
ε
2

1
2bε (λ+ α2)

1
2bε (λ+ α2) `

2

]
> 0

Since the first principle minor is positive by definition, we
examine the second.∣∣∣∣∣ ε

2
1
2bε (λ+ α2)

1
2bε (λ+ α2) `

2

∣∣∣∣∣ > 0

We then compute the determinant.

ε`

4
− 1

4b2
ε2(λ+ α2)

2
> 0⇒ ε`

4
>

1

4b2
ε2(λ+ α2)

2

We arrive at a second condition on `.

` >
1

b2
(λ+ α2)

2
ε

We now have two constraints on `, both upper bounds.

` > 1
b2 (λ+ α2)

2
ε ` >

(
λ+α2

b

)2 (1−εα(y))
2

4λ(1−ε(λ+α2))

Therefore, ` must be greater than their maximum.

` >

(
λ+ α2

b

)2

max

ε,
(
1− εα (y)

)2
4λ
(
1− ε (λ+ α2)

)
 (18)

We now integrate (16) to remove the derivative.

S − S (0)− 1
b

z(t)∫
0

(
κ (s) + b`

)
ds

=
t∫
0

[
−wT (a) Λ (y)w (a)
+ 1
b

(
α2 − α (y)

)
κ
(
z (s)

)
y2 (s)

]
ds

We break up terms.

S − S (0)− 1
b

z(t)∫
0

(
κ (s)

)
ds− `z (t)

= −
t∫
0

wT (s) Λ (y)w (s) ds

+ 1
b

t∫
0

(
α2 − α (y)

)
κ
(
z (s)

)
y2 (s) ds

Rearranging terms, we have the following.

S −
t∫
0

wT (s) Λ (y)w (s) ds

= S (0) + `z (t) + 1
b

z(t)∫
0

(
κ (s)

)
ds

+ 1
b

t∫
0

(
α2 − α (y)

)
κ
(
z (s)

)
y2 (s) ds



We then rewrite this equation as an inequality.

S −
t∫
0

wT (s) Λ (y)w (s) ds

≤ S (0) + `z (t) + 1
b

z(t)∫
0

(
κ (s)

)
ds

+ 1
b

t∫
0

(
α2 − α (y)

)
κ
(
z (s)

)
y2 (s) ds

(19)

We define sequences t2k, t1k, z1k, z2k as follows.

t2k ≡ inf
{
t ∈ R : z (t) = z2k

}
(20)

t1k ≡ sup
{
t ∈ [0, t2k) : z (t) = z1k

}
(21)

z1k ≡ 2πk +

(
π

2

)(
1 + sgn (b)

)
− π

2
(22)

z2k ≡ 2πk +

(
π

2

)(
1 + sgn (b)

)
+
π

4
(23)

We see from these definitions that z ∈ [z1k, z2k] whenever
t ∈ [t1k, t2k]. To prove the boundedness of z, we first
assume unboundedness and show a contradiction. From the
unboundedness assumption on z, we know there exists a
k0 > 0 ∈ Z such that all the above sequences have infinite
cardinality.

{z1k}∞k=k0 {z2k}∞k=k0 {t1k}∞k=k0 {t2k}∞k=k0
Based on (22) and (23):

cos (z1k) = cos

(
2πk +

(
π

2

)(
1 + sgn (b)

)
− π

2

)

cos (z2k) = cos

(
2πk +

(
π

2

)(
1 + sgn (b)

)
+
π

4

)
If b < 0:

cos (z1k) = cos

(
2πk − π

2

)
= 0 ∀k

cos (z2k) = cos

(
2πk +

π

4

)
=

√
2

2
∀k

If b > 0:

cos (z1k) = cos

(
2πk +

π

2

)
= 0 ∀k

cos (z2k) = cos

(
2πk +

5π

4

)
=
−
√

2

2
∀k

From this, the definition of κ (z) and the fact that β ∈ K∞,
we can conclude that when z ∈ [z1k, z2k]. This implies that
1
bκ (z) is less than or equal to zero.

β ∈ K∞ ⇒
1

b
κ (z) ≤ 0 ∀z ∈ [z1k, z2k]

We know that for all t ∈ [0, t2k] such that z (t) ≥ z1k, this
relationship also holds.

1

b
κ (z) ≤ 0 ∀ t ∈ [0, t2k]

z (t) ≥ z1k

We can apply the above to the last term of (19) to establish
the upper bound when t = t1k.∫ t1k

0

α2−α(y(s))
b κ

(
z (s)

)
y2 (s) ds

We know that α2 − α
(
y (s)

)
> 0 ∀s and y2 (s) > 0 ∀s

and from our above conclusion
1

b
κ
(
z (t)

)
≤ 0 for z (t) ≥ z1k

We know that when z (t) ≥ z1k, the integral will be negative.
Thus, if we look at z (t) ≤ z1k, we will have an upper bound.∫ t1k

0

α2−α(y(s))
b κ

(
z (s)

)
y2 (s) ds

≤
∫

t ∈ [0, t1k]
z (t) ≤ z1k

α2−α(y(s))
b κ

(
z (s)

)
y2 (s) ds

We can further refine the upper bound by using the fact that

α2 − α
(
y (s)

)
b

≤ α2 − α1

|b|
We first substitute the expression for κ(z(s)).∫ t1k

0

α2−α(y(s))
b κ

(
z (s)

)
y2 (s) ds

≤
∫

t ∈ [0, t1k]
z (t) ≤ z1k

α2−α(y(s))
b β

(
z (s)

)
cos
(
z (s)

)
y2 (s) ds

We then bound β
(
z (s)

)
cos
(
z (s)

)
with β

(
z (s)

)
.∫ t1k

0

α2−α(y(s))
b κ

(
z (s)

)
y2 (s) ds

≤
∫

t ∈ [0, t1k]
z (t) ≤ z1k

α2−α(y(s))
b β

(
z (s)

)
y2 (s) ds

We bound β
(
z (s)

)
with the supremum and factor it out. We

also use the bound for α(y(s)).∫ t1k
0

α2−α(y(s))
b κ

(
z (s)

)
y2 (s) ds

≤ α2−α1

|b| sup
t ∈ [0, t1k]
z (t) ≤ z1k

{
β
(
z (t)

)} ∫
t ∈ [0, t1k]
z (t) ≤ z1k

y2 (s) ds

We next solve the expression for z for the integral.

z =
1

2
y2 + λ

t∫
0

y2 (s) ds⇒ λ

t∫
0

y2 (s) ds = z − 1

2
y2

We substitute this in the bound.∫ t1k
0

α2−α(y(s))
b κ

(
z (s)

)
y2 (s) ds

≤ α2−α1

|b| sup
t ∈ [0, t1k]
z (t) ≤ z1k

{
β
(
z (t)

)} [ z(t)
λ −

y2(t)
2λ

]
t ∈ [0, t1k]
z (t) ≤ z1k

Since the second term is positive, we can remove it and
maintain our upper bound. Plugging in the maximum value
of z(t) yields an upper bound.∫ t2k

0

α2−α(y(s))
b κ

(
z (s)

)
y2 (s) ds

≤ α2−α1

λ|b| β (z1k) z1k
(24)



When t = t2k, the upper bound remains the same, since
when t > t1k, z ≥ z1k and sgn (b)κ

(
z (t)

)
≤ 0, so the

integral is negative and we can remove it to create an upper
bound similar to the above work.∫ t2k

0

α2−α(y(s))
b κ

(
z (s)

)
y2 (s) ds

≤
∫

t ∈ [0, t1k]
z (t) ≤ z1k

α2−α(y(s))
b κ

(
z (s)

)
y2 (s) ds

We use the same logic to arrive at the upper bound.∫ t2k
0

α2−α(y(s))
b κ

(
z (s)

)
y2 (s) ds

≤ α2−α1

λ|b| β (z1k) z1k
(25)

We can now choose t = t2k and apply (25) to (19) to get
the following.

S (t2k) ≤ S (0) + 1
b

∫ z2k
0

(
κ (s) + b`

)
ds

+α2−α1

λ|b| β (z1k) z1k
(26)

We next examine the second term in the bound in (26).

1

b

∫ z2k

0

(
κ (s) + b`

)
ds

For

z ∈
[
z1k, z2k −

π

2

]
When b < 0, then we know from before that cos (z1k) = 0
and we can see that:

cos

(
z2k −

π

2

)
= cos

(
2πk − π

4

)
=

√
2

2
∀k

Thus κ
(
z (t)

)
≥ 0 and:

sgn (b)κ
(
z (t)

)
≤ 0

When b > 0, we know from before that cos (z1k) = 0 and
we can see that the following relationship holds.

cos

(
z2k −

π

2

)
= cos

(
2πk +

3π

4

)
=
−
√

2

2
∀k

Thus κ
(
z (t)

)
≤ 0 and we can bound sgn (b)κ

(
z (t)

)
.

sgn (b)κ
(
z (t)

)
≤ 0 ∀z ∈

[
z1k, z2k −

π

2

]
For z ∈

[
z2k − π

2 , z2k
]
, when b < 0, then we know from

before that cos (z2k) =
√
2
2 and from above that the following

is true.

cos

(
z2k −

π

2

)
=

√
2

2
∀k

Thus κ
(
z (t)

)
≥
(

1√
2

)
β
(
z2k − π

2

)
and we can bound

sgn (b)κ
(
z (t)

)
.

sgn (b)κ
(
z (t)

)
≤ −

(
1√
2

)
β

(
z2k −

π

2

)

When b > 0, then, again, we know from before that
cos (z2k) = −

√
2

2 and from above that the following is true.

cos

(
z2k −

π

2

)
=
−
√

2

2
∀k

Thus κ
(
z (t)

)
≤ −

(
1√
2

)
β
(
z2k − π

2

)
and we can bound

sgn (b)κ
(
z (t)

)
.

sgn (b)κ
(
z (t)

)
≤ −

(
1√
2

)
β

(
z2k −

π

2

)
Using this, we can break up the integral of the term we are
interested in. We know that for z ∈

[
z1k, z2k − π

2

]
the value

is negative and can be ignored to create an upper bound and
we can easily integrate the b` term.

1
b

∫ z2k
0

(
κ (s) + b`

)
ds

≤ `z2k + 1
b

∫ z1k
0

κ (s) ds+ 1
b

∫ z2k
z2k−π/2 κ (s) ds

We can then substitute the above bounds to derive the
following upper bound.

1
b

∫ z2k
0

(
κ (s) + b`

)
ds

≤ `z2k + 1
|b|β (z1k) z1k − π

2
√
2|b|β

(
z2k − π

2

) (27)

We first substitute (27) into (26).

S (t2k) ≤ S (0) + `z2k + 1
|b|β (z1k) z1k − π

2
√
2|b|β

(
z2k − π

2

)
+α2−α1

λ|b| β (z1k) z1k

We have the following relationship between z1k and z2k.

z2k = z1k + 3π/4

Substituting this, we have the following.

S (t2k) ≤ S (0) + `
[
z1k + 3π/4

]
+ 1
|b|β (z1k) z1k

− π
2
√
2|b|β

([
z1k + 3π

4

]
− π

2

)
+ α2−α1

λ|b| β (z1k) z1k

We then expand and cancel common terms.

S (t2k) ≤ S (0) + ` 3π4 + `z1k + 1
|b|β (z1k) z1k

− π
2
√
2|b|β

(
z1k + π

4

)
+ α2−α1

λ|b| β (z1k) z

Rearranging we arrive at the final expression.

S (t2k) ≤ S (0) + 3`π
4 + `z1k + 1

|b|
(
1 + α2−α1

λ

)
β (z1k) z1k

− π
2
√
2|b|β

(
z1k + π

4

)
(28)

We can rewrite (12) as follows, first reversing the sign and
then multiplying by z.

lim
z→+∞

[
β(z+ε)
z − cβ (z)

]
= +∞

⇒ lim
z→+∞

[
cβ (z)− β(z+ε)

z

]
= −∞

⇒ lim
z→+∞

[
cβ (z) z − β (z + ε)

]
= −∞

We examine (28), repeated below.

S (t2k) ≤ S (0) + 3`π
4 + `z1k + 1

|b|
(
1 + α2−α1

λ

)
β (z1k) z1k

− π
2
√
2|b|β

(
z1k + π

4

)



We divide out the factor of π
2
√
2|b| . We see that the last two

terms approach −∞, forcing the left hand side to be negative.
However, we know that S(t2k) is positive definite. Therefore,
we have a contradiction, and z is thus bounded.

S(t2k)
π

2
√

2|b|
≤ S(0)

π
2
√

2|b|
+

3`π
4
π

2
√

2|b|
+ `z1k

π
2
√

2|b|

+
1
|b|

(
1+

α2−α1
λ

)
π

2
√

2|b|
β (z1k) z1k − β

(
z1k + π

4

)
Since z ∈ L∞ looking at (11), repeated below, we can
conclude that y ∈ L∞ ∩ L2.

z =
1

2
y2 + λ

t∫
0

y2 (s) ds ∈ L∞ ⇒ y ∈ L∞ ∩ L2

From (28), we know that S ∈ L∞. Examining the definition
of S, we see that u ∈ L∞ ∩ L2.

S = wTΛ′ (y)w ∈ L∞, w =
[
u y

]T ⇒ y ∈ L∞ ∩ L2

The boundedness of u and y together with (6) implies that
u̇, ẏ ∈ L∞.{

f (y) ∈ L∞ ⇒ ẏ = f (y) + bu ∈ L∞
unom ∈ L∞ ⇒ εu̇ = unom − u ∈ L∞

}
Together, this allows us to apply Barbalat’s Lemma and
conclude that y(t), u(t) go to zero.

lim
t→∞

y (t) = lim
t→∞

u (t) = 0

And finally, given the definition of unom, we see that unom
also goes to zero.

lim
t→∞

y (t) = 0, lim
t→∞

z (t) = 0

⇒ lim
t→∞

unom = lim
t→∞

κ
(
z (t)

)
y (t) = 0

This completes the proof of Theorem 1, showing the all
signals are bounded and converge to zero.

Corollary 1 Let the closed-loop system described by the
linear system with ignored fast actuator dynamics{

ẏ = αy + bu
εu̇ = unom − u

}
(29)

and controller (10), (11).

unom = κ (z) y

z =
1

2
y2 + λ

t∫
0

y2 (s) ds

If ε (λ+ α2) < 1, and κ(·) is a Nussbaum function then, all
closed-loop signals are bounded and

lim
t→∞

y (t) = lim
t→∞

u (t) = lim
t→∞

unom (t) = 0.

Proof: In the case of a linear system, we have the
following.

α (y) = α1 = α2 = α

In this case, the last terms in (19) and (26) will cancel and
they will become the following.

S −
t∫

0

wT (s) Λ (y)w (s) ds ≤ S (0) + `z (t) +
1

b

z(t)∫
0

(
κ (s)

)
ds

S (t2k) ≤ S (0) +
1

b

∫ z2k

0

(
κ (s) + b`

)
ds

The derivation of (24) and (25) is no longer required. The
proof otherwise proceeds the same.

III. SIMULATION EXAMPLES

A. Linear system

A simulation was performed on the linear system with
ignored actuator dynamics described in (29).{

ẏ = αy + bu
εu̇ = unom − u

}
α = 0.8 b = 0.05 ε = 0.1 y (0) = 5 u (0) = 0

Three systems were compared: a Nussbaum gain controller
described in (30), a nonlinear PI controller (10) and (11) with
a non-Nussbaum gain (κ (z) = z cos (z)), and a nonlinear PI
controller with a Nussbaum gain (κ (z) = z2 cos (z)).
Nussbaum Gain Controller:{

unom = ζ2 cos (ζ) y

ζ̇ = λy2

}
ζ (0) = 0
λ = 0.15

(30)

As seen in Figure 4 of [1], only the nonlinear PI controller
with a Nussbaum gain provides convergent solutions.
PI

unom = κ (z) y z = 1
2y

2 + λ
t∫
0

y2 (s) ds

κ (z) = z cos (z) Not Nussbaum
κ (z) = z2 cos (z) Nussbaum

The results of the author’s simulations were replicated using
the Simulink models seen in Figures 1, 2, and 3. A graph
of the results can be seen in Figure 4, which matches the
results achieved by the author.

Fig. 1: Simulink Model for LSIAD + NG



Fig. 2: Simulink Model for LSIAD + nPI

Fig. 3: Simulink Model for LSIAD + nPI-N

Fig. 4: Results for Linear System

B. Nonlinear system

A simulation of the nonlinear system (6) was also per-
formed with parameters conforming the assumptions of
Theorem 1. As seen in Figure 5 of [1], y (t), u (t), and
unom (t) are all bounded and converge to zero as expected.{

ẏ = f (y) + bu
εu̇ = unom − u

}

f (x) = 3
[
1 + 2 sin

(
exp (x)

)]
x

b = 1 α1 = −3 α2 = 9 λ = 0.5 ε < 1
α2+λ

= 0.105

u = κ (z) y z = 1
2y

2 + λ
t∫
0

y2 (s) ds

κ (z) =

[
exp

(
z2

10

)
− 1

]
cos (z)

ε = 0.1
u (0) = 0
y (0) = 5

An attempt was made to replicate the author’s simulation
using the authors settings with the Simulink model seen in
Figure 5. However, the results, seen in Figure 6a, did not
match the author’s. y, u and unom did go to zero, but u
and unom grew unreasonably large at the start. Based on the
author’s previous work in [2], a slight adjustment was made
so λ = 2.5 and y(0) = 4. The results, seen in Figure 6b
are more consistent with the desired outcome, such that y,
u and unom go to zero and remain reasonable throughout.
The large amount of oscillation at the beginning suggested
the need for a larger value of λ which acts as a dampening
factor and a singularity near y = 4.6, required a shifting of
the initial condition for y.

Fig. 5: Simulink Model for the Nonlinear System

(a) Results for the Nonlinear Sys-
tem Using Given Parameters

(b) Results for the Nonlinear System
Using Modified Parameters

Fig. 6: Nonlinear System

IV. CONCLUSIONS

As seen in Theorem 1 and the accompanying simulations,
using a nonlinear PI controller with an appropriately se-
lected Nussbaum gain will allow for robust control of sector
bounded nonlinear systems with unknown control directions.
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