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Introduction 
In this lab we designed a series of controllers of increasing complexity to effectively control 

the Reaction Wheel Pendulum (RWP). This device consists of a weight and motor mounted at 
the end of a pendulum affixed to the body of the device through the pivot point. We are able to 
actuate this system via the DC motor mounted to the end of the pendulum. The spin of the motor 
generates a torque on the pendulum which allows us to control the pendulum angle. Our control 
system aims first to stabilize the pendulum about the unstable equilibrium point where the 
pendulum stands vertically with the weight suspended in midair and also later about the stable 
equilibrium where the weight hangs downwards under the force of gravity. Our system contains 
two high quality optical encoders which allow us to measure the angles between the pivot point 
and the pendulum and between the pendulum and the rotor, φp and φr respectively. Ultimately, 
we will design a controller which swings the pendulum up to the unstable equilibrium by 
destabilizing the system about the stable equilibrium point and implementing switching control 
to stabilize our system about the unstable equilibrium once the system reaches the desired 
position. 

 

Mathematical Model (_/10) 
Derivation of differential equations from Lagrangian (_/5pts) 
 

The following system definitions are derived in the lab manual. 

   
The system diagram shown below allows us to find the height of interest in calculating 

the potential energy for our pendulum 

 
Given the pendulum system, the kinetic energy is found to be one half the effective 

moment of inertia times the angular velocity. 

 
The potential energy is then found to be the effective mass times g times the effective 

height for the potential energy calculation. This height is the vertical height between the center of 
mass of the rotor and the center of mass of the whole system. The potential energy can then be 
calculated as follows.  

J = Jp +mplp
2 +mrlr

2 m = mp +mr ml = mplp +mrlr

KEp =
1
2
Jω p

2 = 1
2
Jp +mplp

2 +mrlr( ) !θ 2
p
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The kinetic and potential energy of the rotor are found in the same manner. Since the 

rotor’s kinetic energy is independent of the kinetic energy of the pendulum, the moment of 
inertia of the rotor alone can be used. Since the rotor is symmetric about the origin point, its 
effective length is zero and it therefore has zero potential energy. 

 
 

The Lagrangian for the pendulum is the kinetic minus the potential energy. 

 

 
 

 
 The Lagrange equation for the pendulum is the time derivative of the partial derivative of 
the Lagrangian with respect to the special derivative of the parameter minus the partial derivative 
of the Lagrangian with respect to the parameter. This is equal to the torque, or k times the current 
i. 

 

 
 

  
The Lagrange equation for the rotor is found trivially in the same manner. 

  

 
 

 
 

Defining the following constants  
 

   
 Our equations of motion become  

   
 
 

PEp = mgh = mg lr − l cosθ p( ) PEp = mg lr −
mplp +mrlr( )

m
cosθ p

⎛

⎝
⎜

⎞

⎠
⎟

PEp = g mp +mr( )lr − mplp +mrlr( )cosθ p( )

KEr =
1
2
Jrω r

2 = 1
2
Jr !θr

2 PEr = 0

PEp = mgh = mg lr − l cosθ p( )
PEp = mg lr −

mplp +mrlr( )
m

cosθ p

⎛

⎝
⎜

⎞

⎠
⎟

PEp = g mp +mr( )lr − mplp +mrlr( )cosθ p( ) Lp =
1
2
Jp +mplp

2 +mrlr
2( ) !θ p

2 − g mp +mr( )lr − mplp +mrlr( )cosθ p( )

d
dt

∂Lp

∂ !θ p

⎛

⎝⎜
⎞

⎠⎟
−
∂Lp

∂θ p

= τ k

d
dt

J p +mplp
2 +mrlr

2( ) !θ p( )+ g mplp +mrlr( )sinθ p = −ki Jp +mplp
2 +mrlr

2( ) !!θ p + g mplp +mrlr( )sinθ p = −ki

!!θ p +mg
mplp +mrlr( )

m Jp +mplp
2 +mrlr

2( ) sinθ p =
−ki

J p +mplp
2 +mrlr

2( )
!!θ p +

mgl
J
sinθ p =

−ki
J

Lr = KEr − PEr =
1
2
Jr !θr

2 d
dt

∂Lr
∂ !θr

⎛
⎝⎜

⎞
⎠⎟
− ∂Lr
∂θr

= τ k

d
dt

Jr !θr( ) = ki Jr !!θr = ki

!!θr =
ki
J

ki = ku a =ω 2
np =

mgl
J

bp =
ku
J

br =
ku
Jr

!!θ p + asinθ p = −bp !!θr = br
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Linearization into state space form (_/5pts) 
 

The reaction wheel pendulum has the following equations of motion, disregarding 
frictional losses. 

   
We can rewrite the equations in state variable form as given by 

 
 

 
Linearizing about the equilibrium position θp=Π. We have that θp’=x2=0. The state space 

matrices can be determined via the Lagrangian method as follows. 

 
 

 
 

 
Full State Feedback Control with Friction Compensation (_/50) 
1. Explain (in words) the development of the PD control (two-state and three-state feedback controllers in 
Chapter 4) with friction compensation (system identification in Chapter 2). How did you arrive at the values 
of your friction compensator? Was friction compensation beneficial to your state feedback controller or not, 
and why? (1-2 paragraphs of text) 10pts 
 

The Friction Compensation values were calculated for velocity control by considering 
friction as a linear function of. The values of friction are derived using open loop system 
identification by keeping the pendulum at a fixed position and running the motor at constant 
reference speed for different velocities and in both directions. This allows us to record the 
control effort and gives us a linear fit of friction with the angular velocity. 
 The data collected during our experiment is summarized in the table below. 

 Table 1: Friction Compensation 
(rad/s) 20 40 60 88 112 
Control Effort Positive Speed 1.778 1.4596 1.7769 2.2172 2.5752 
  

!!θ p + asinθ p = −bpu !!θr = −bru

!x = Ax + Bu x = x1 x2 x3 x4⎡
⎣

⎤
⎦
T
= θ p

!θ p θr
!θr

⎡
⎣⎢
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T
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⎡

⎣
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⎢
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⎢
⎢
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⎥
⎥
⎥
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⎢
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⎥
⎥
⎥

δ !θ p

δ !!θ p

δ !θr

δ !!θr

⎡

⎣

⎢
⎢
⎢
⎢
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⎥
⎥
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⎥
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⎥
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⎢
⎢
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⎥
⎥
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⎥

+

0
−bp
0
br

⎡

⎣

⎢
⎢
⎢
⎢
⎢
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⎥
⎥
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(rad/s) -20 -45 -66 -79 -112 
Control Effort Negative Speed -1.3306 -1.6611 -1.9970 -2.2100 -2.6925 
 After performing a curve fit on the data as shown below we arrived at the following 
equations. 

 
 

 
 
 This yielded the following values for the frictional constants. 
b+ c+ b- c- 

0.015322 0.086073 0.014976 -1.0138 
Friction composition enhances our feedback controller by allowing the controller to 

maintain a steady state equilibrium without as great of an effort. 
 In order to design a proportional controller with friction compensation, we started with 
the following system parameters.  

 
  

 
 

 Writing the system equation in the Laplace domain and then transforming back allows us 
to swiftly compute the time response 

  
  

 Using our knowledge of the rise time (tr), calculation of the gain for our proportional 
controller is now trivial 
 

   

f = 0.015322ω + 0.086073 ω > 0
f = 0.014976ω −1.0138 ω < 0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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y=0.015322	ω+0.86073													ω >	0	
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tr = 0.2s u = 100 ⋅1 t( ) rad
s

br = 198
rad
s

ω s( )
U s( ) =

br
s

u t( ) = −k ω r −ω( )

ω s( ) = −k ω r

s
−ω s( )⎛

⎝⎜
⎞
⎠⎟
br
s ω s( ) = −kbrω r

1
s s − kbr( ) =

r
s
− r
s − kbr

⎛
⎝⎜

⎞
⎠⎟

r = kbr ω t( ) = r 1− e−kbrt( )

r 1− e−kbrtr( ) = 0.9r e−kbr 0.2 = 0.1 −kbr0.2 = ln 0.1( )
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On implementation in Windows Target, we observe that the swing of the pendulum 
around the equilibrium position is much lower with application of friction compensation. This is 
because the friction compensation allows the controller to pull back with less torque, resulting in 
smaller swing. 
  The block diagram for our implementation is shown below. 

 
Proof closed-loop system is stable in the inverted position (_/20) 
2. Provide a mathematical proof that the linearized, frictionless closed-loop system is stable in the inverted 
position. That is, prove that theta_ p(t) goes to pi as time t goes to infinity for the 3-state feedback controller 
you designed.  
First, show that the only place where  is zero is at your linearized equilibrium position. Then, show that for 
the linearized system , the equilibrium state x=[0, 0, whatever, 0] is stable. (1-2 pages of 
equations, pole plots, block diagrams, etc.) 20pts 
Hint: First, substitute your control in for u. You should arrive at a differential equation with x as the only 
variable. Set  to zero and solve for x to find the equilibrium points. Now, note that we don't care what 
theta_ r is, and that theta_ r doesn't affect any of the other states. So, to check that [0 0 whatever 0] a stable 
equilibrium, create a smaller 3x3 A matrix and 3x1 B matrix where your states are delta_ theta_ p, theta_ p_ 
dot, and theta_ r_ dot. If this smaller system (including your 3-state feedback) is stable, then delta_ theta_ p, 
theta_ p_ dot, and theta_ r_ dot all converge to 0, and [0 0 whatever 0] is a stable equilibrium. You must use 
Microsoft Equation Editor, LaTeX, or a comparable program to generate equations. 
  When we designed the three state feedback controller, our goal was to control the 
velocity and leave the position alone. This stabilizes the velocity of the rotor but does not affect 
the position. Thus, we can ignore θ’r since we are not controlling the position of the rotor. We 
leave the system as a four by four matrix for convenience and set the gain for θ’r to zero. 
 We choose to stabilize the system about the equilibrium point θp=Π and so we define δθp 
as the deviation from this equilibrium point as follows. 

 
 

  The system is then modeled as follows. 

k = − ln 0.1( )
0.2br

= − ln(0.1)
0.2(198)

= 0.0581

δθ p = θ p −π
δθr = θr
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  For the state space system given above, we determined the system parameters 
experimentally. They are given below. 

bp br a 
1.0951 206.5608 70.1741 

 
 In order to prove stability, we take the input to the system as -Kx and find the eigenvalues 
of the system matrix A-BK. For our experimentally determined parameters the system matrix is 
calculated below. 

 

 
 

 
 The eigenvalues were calculated via Mat Lab and are shown below. It can be observed 
that they are all in the left half plane, proving stability. 

 
 We now know that since A-BK is stable and full rank, and since x’=(A-BK)x must go to 
zero at equilibrium, the only solution is given by x=0 as shown below. 

  
 We know know that since δθp is defined as θp-Π, the equilibrium point occurs at θp=Π as 
described below. As time goes infinity, at steady state, x’=0 and this implies that θp goes to pi 
and θr goes to zero as shown below. Hence the position at the upward equilibrium is stable.	

 
 

δ !θ p

δ !!θ p

δ !θr
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⎢
⎢
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⎥
⎥
⎥

⋅

δθ p

δ !θ p

δθr

δ !θr

⎡

⎣

⎢
⎢
⎢
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⎥
⎥
⎥
⎥
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 The final block diagram for our controller is shown below. 

 
 

Table of Values (_/10)  
3. From your Simulink simulations of the RWP, give the maximum IC deviation, pulse disturbance, and 
constant perturbation that the controller can stabilize. (1 table of values) 10pts 
 

Based on the Simulink simulations of our state feedback design for the control of the 
RWP, the maximum IC deviations, pulse disturbance, and constant perturbation that the 
controller can stabilize are included in Table 1 below. 

Table 2: Robustness Comparisons 
 Two-State Feedback Three-State Feedback 

𝛿𝜃# 𝛿𝜃# 𝛿𝜃# 𝛿𝜃# 
Max IC deviations 0.96 rad 0.98rad/s 0.96 rad 1.05rad/s 
Max pulse 5 6 
Max disturbance 3 4.1 

Behavior of System (_/10) 
4. From your Windows Target implementation, describe the behavior of the system caused by your 
controller. (1 paragraph) 10pts 

After implementation in Windows Target, we observe that the pendulum successfully 
balances itself at the equilibrium position. The small disturbances are rejected by the controller. 
The three state feedback has an extra state that it must control. Therefore, it should be less robust 
than the two state feedback and this is confirmed by our experiment. 

δθ p

δ !θ p

δθr

δ !θr

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

π
0
0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥



8	
	

 
Full State Feedback Control with Decoupled Observer (_/50) 
1. Explain the following: Why are observers used? Why can we decouple the 4-state observer design into two 
2-state observers? What is the advantage of this versus a single 4-state observer? 10pts 
  An observer design is now used for the Reaction Wheel Pendulum (RWP) in order to 
replace the full state feedback controller and provide an accurate estimate of both the velocity 
and position states which describe our system. 
  State space Model of our system is of the form: 

 

From the above form we observe that A is of a block diagonal form. Hence the dynamics 
of the 4 observer system can be decoupled to a 2 observer system as shown below. 

  

 

The eigenvalues of A are the union of the eigenvalues of M and N. The advantage of 
using this instead of a 4 state observer is that it allows us complete control over the controller 
and the observer poles separately. 

Proof observer states converge to the real states (_/20) 
2. You already proved that the 3-state feedback controller stabilizes the pendulum in the inverted 
configuration. Now prove that the observer states converge to the real states over time. That is, show that the 
error between the actual states and estimated states  goes to zero over time. 20pts 
Hint: Differentiate the equation for the error. Next substitute the equations you have for x_dot, xhat_dot, and 
u. You should end up with a differential equation with the error e as the only variable. Next, prove that the 
poles are stable. Set e_dot equal to zero and show that e = [0,0,0,0] is the only stable equilibrium for this 
equation. 
 
  A system is observable if the estimated state approaches actual state over time. In order to 
verify the stability of our system we must prove that this is the case. The error between estimated 
states and actual states is given by the following equation. 

 

On differentiating the error, we get 

!x =

0 1 0 0
a 0 0 0
0 0 0 1
0 0 0 0

⎡

⎣

⎢
⎢
⎢
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⎥
⎥
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⎢
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⎥
⎥
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⎥
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⎥ ⋅
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⎥
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⎢
⎢
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⎥
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⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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0 1
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⎡

⎣
⎢

⎤

⎦
⎥ x1,2 +

0
−bp

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
u C1,2 = 1 0⎡

⎣
⎤
⎦

!x3,4 =
0 1
0 0

⎡

⎣
⎢

⎤

⎦
⎥ x3,4 +

0
br

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
u C3,4 = 1 0⎡

⎣
⎤
⎦

⎧

⎨

⎪
⎪⎪

⎩
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⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

e = x − x̂
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 The eigenvalues of A-LC are calculated as follows 
 

 

 

 
The eigenvalues are -150, -99, -200, and -180, which to the closed loop poles which we 

designed. As all the eigenvalues lie in LHP, the system is stable. 
If we set e’=0 in the equation e’=(A-LC)e in order to find the steady state equilibrium, we 

know that since A-LC is stable and full rank the only solution is given by the vector below. 

 
Therefore, since the error goes to zero over time, the observer poles provide a perfect 

estimation of actual steady state value. 
The block diagram of the full-state feedback control with observer added is shown below. 

 

!e = !x − !̂x = Ax + Bu − A − LC( ) x̂ + Bu + Ly( ) !e = A − LC( )x − A − LC( ) x̂ = A − LC( )e

A − LC =

0 1 0 0
a 0 0 0
0 0 0 1
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

L11
L21
L31
L41

L12
L22
L32
L42

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⋅
1 0 0 0

0 0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

0 1 0 0
70.1741 0 0 0
0 0 0 1
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−104 ⋅

0.0250
1.5070
0
0

0
0

0.0380
3.6000

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⋅
1 0 0 0

0 0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

A − LC =

0 1 0 0
70.1741 0 0 0
0 0 0 1
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−104 ⋅

0.0250 0 0 0
1.5070 0 0 0
0 0 0.0380 0
0 0 3.6000 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 104 ⋅

−0.0250 0.0001 0 0
−1.5070 0 0 0
0 0 −0.0380 0.0001
0 0 −3.6000 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

λ =

−150.0035
−99.9965
−200.000
−180.000

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

eeq =

0
0
0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Table of Values (_/10)  
3. From your Simulink simulations of the RWP, give the maximum IC deviation, pulse disturbance, and 
constant perturbation that the controller can stabilize. (1 table of values) 10pts 

Based on the Simulink simulations of our observer design for the control of the RWP, the 
maximum IC deviations, pulse disturbance, and constant perturbation that the controller can 
stabilize are included in Table 2 below. 

Table 2 Robustness Comparisons 
 Two-State 

Feedback 
Three-State Feedback Observer 

𝛿𝜃# 𝛿𝜃# 𝛿𝜃# 𝛿𝜃# 𝛿𝜃# 𝛿𝜃# 
Max IC deviations 0.96 

rad 
0.98rad/s 0.96 rad 1.05rad/s 0.99rad 0.82rad/s 

Max pulse 5 6 5.5 
Max disturbance 3 4.1 4.5 

Behavior of System (_/10) 
4. From your Windows Target implementation, describe the behavior of the system caused by your controller 
with the observer. (1 paragraph) 10pts 

After implementing the observer in Windows Target, we verified that the simulation 
result agrees with the actual system behavior of the Reaction Wheel Pendulum (RWP). As 
predicted during simulation, the Reaction Wheel Pendulum (RWP) rejects the small disturbances 
and maintains its position. The poles were placed at -100, -180, -150 and -200. These poles were 
selected so that they are much faster than the controller poles. After the implementation of the 
observer design, the entire system became more sensitive and the error dies out quickly enough 
to reposition the pendulum arm almost perfectly about the top equilibrium. 
 
Extra Credit (1/2 page each, 35 possible pts) 
Explain your approach to the two optional sections. What techniques did you use? Also include your 
Windows Target model(s) in an appendix. Note: these sections do not count against your total number of 
pages 

In the next part of the project, we designed a switching pendulum with two equilibrium 
points: the top equilibrium and the bottom equilibrium. We had previously designed a controller 
for balancing up using the three state feedback system. We now redesign this system for down 
control. Firstly, we calculate the Linearization of the system again about the point θp=0.  
 The derivation of the system equation is shown below. 

 
 

 
 We used the same approach described above to calculate new values of the gain. 

A ' =

0 1 0 0
−a 0 0 0
0 0 0 1
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

0 1 0 0
−70.1741 0 0 0

0 0 0 1
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!x =

0 1 0 0
−70.1741 0 0 0

0 0 0 1
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x +

0
−bp
0
br

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

u
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Otherwise our control implementation was exactly the same. 

 
It can be shown as below that the Eigen values of this controller are once again in the 

LHP. 

 

 

 
 The block diagram of our final design is shown below. 
 

 
Implementing the three state feedback with the above values of K for the down controller 

along with the previously designed three state up controller, we are able to successfully 
implement a pendulum controller which intelligently switched to the appropriate control 
structure within the range of these respective equilibria. 
  
 Our next task was to implement swing up control for the Reaction Wheel Pendulum 
(RWP). We decided to accomplish this by inverting the output from our stabilizing controller for 
the downwards equilibrium so that our controller destabilized the system about this equilibrium 
point. This allowed us to generate a swing up which could pull our controller into the upwards 
equilibrium. We then simply had a switch block which checked if the cosine of our angle plus 

K ' = K '
1 K '

2 K '
3

⎡
⎣⎢

⎤
⎦⎥ = −50.8274 −8.1083 0.0321⎡

⎣
⎤
⎦

A − BK =

0 1 0 0
−a 0 0 0
0 0 0 1
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

0
−bp
0
br

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⋅ K1 K2 K3 K4
⎡
⎣

⎤
⎦ =

0 1 0 0
−70.1741 0 0 0

0 0 0 1
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

0
−1.0951
0

206.5608

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅ −50.8274 −8.1083 0 0.0321⎡
⎣

⎤
⎦

A − BK =

0 1 0 0
−70.1741 0 0 0

0 0 0 1
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−104 ⋅

0 0 0 0
0.0056 0.0009 0 0
0 0 0 0

−1.0499 −0.1675 0 0.0007

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 104 ⋅

0 0.0001 0 0
−0.0126 −0.0009 0 0
0 0 0 0.0001

1.0499 0.1675 0 −0.0007

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

λ =

0
−4.2421+ 6.9449i
−4.2421− 6.9449i

−7.0258

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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one was within a certain threshold of one, that is, if our angle was within a certain threshold of 
Π, allowing us to transition into stabilizing control about the upwards equilibrium.  
 We ran into a major issue where our controller’s behavior became indeterminate if the 
swing up took the controller over the unstable equilibrium at the top to fast for our controller to 
kick on and stabilize the system. We realized that two issues in our control structure were 
causing this problem. One was that our angle was not resetting to zero after the pendulum passed 
Π, so our swing up would not even work after a failure to stabilize. We solved this problem by 
adding a mod operator to our angle so that it always remained within 2Π. Our other problem was 
that the force of the swing through the upwards equilibrium was too great. We solved this 
problem by implementing a second switch which checked if the negative cosine of our angle was 
within threshold of zero, or our angle was close to pie over two. This allowed us to have a 
regime where the pendulum could slow down before transitioning to stabilization about the 
upwards equilibrium. Our design was robust to the satisfaction of our TA. Further improvement 
could be made by adding a variable inverse gain with feathering instead of the constant inverse 
gain in front of our down controller. This would allow the gain to be decreased closer to a higher 
angle and better control the force torque output of the pendulum such that it smoothly 
transitioned to the stabilizing regime.  
 The overall block diagram for our intelligent swing up controller is shown below. It 
utilizes two controller blocks, the up controller and the down controller, whose diagrams are 
shown on the following page. 
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Up Controller 
 

 
Down Controller 

 

 
 
Conclusion: 
 Over the course of this lab, we designed six controllers, a proportional controller for 
friction compensation, a two state feedback controller, a three state feedback controller, a 
decoupled observer controller, a switching controller, and a swing up controller. The 
proportional controller allowed us to enhance all of our following designs by minimizing 
frictional losses. We found that in reality, the decoupled observer controller was the most 
sensitive, while the two state feedback controller was the most robust. However, only the three 
state feedback controller was able to stabilize the velocity of the rotor and the decoupled 
observer allowed full control of the system without perfect knowledge of the system states.  
 We decided to use our three state feedback controller to implement switching control and 
feedback control. After redesigning our controller for stabilization about the bottom equilibrium 
point, we were able to trivially implement switching control. For our swing up control, we 
simply inverted the output of our controller for the bottom equilibrium to introduce swing up 
instability, and used our switching control to stabilize the system about the top equilibrium point 
once it was at the desired position. 
 Over the course of this lab we went through a full control design process, including 
system identification, model validation, controller comparison, and design validation. We were 
able to use the tools we learned over the course of the semester to create an original design which 
implemented an intelligent controller which recognized current system properties and modified 
its own design based on the current system state. This seemingly simple design is actually the 
foundation of cutting edge research in the field of intelligent control. By completing this lab, we 
have taken the first step of many toward creating a new class of intelligent devices which interact 
with the world in new ways. 


