

Generalized Edge Detection for Currency Value

of Coins

Embedded Digital Signal Processing Laboratory
ECE420

Friday, 3:00pm

Omar Ayala (obayala2)

Ignacio Diez de Rivera (id4)
Wyatt McAllister (wmcalli2)

1.0 INTRODUCTION

1.1: Project Overview
 Edge detection is a well documented topic in image processing which allows for detection
of bounded shapes in complex images via contrast analysis. Our laboratory for this embedded
digital signal processing class has covered basic image processing techniques as well as their
implementation on the android ecosystem, and our foundational laboratory course in signal
processing (ECE311) has covered edge detection in detail. For this project we will use the
generalized Hough Transformation as discussed in Ballard, Dana H. “Generalizing the Hough
transform to detect arbitrary shapes.”1 to detect circles in an image captured with the android
camera in order to detect coins and their relative sizes. We will take a count of the number of coins
in an image and their type and use this to generate a total value in the currency selected by the
user. For this project we will use dollars and Mexican pesos and detect nickels, dimes, quarters,
and one, two, five, and ten peso coins.

1.2: Motivation
 International travelers face challenges with currency on a daily basis. No real time
algorithm for currency conversion of coins based on edge detection exists. Challenges preventing
this are the need to calibrate the image based on observer distance and viewing angle. With
conventional methods, it is necessary that our image be taken at a viewing angle that is normal to
the plane on which the coins reside in order to accurately measure the size of the coins. However,
our proposed algorithm will use the generalized Hough Transform to detect the coins as circles,
alongside an accurate description of the relative sizes of all of the coins. This will allow us to
obtain accurate results from a normal viewing angle, as well as obtain an accurate representation
of the coins regardless of distance, as the relative sizes of US and Mexican coins have a large
enough margin of error to ensure accuracy.

1.3: Benefits
• Portable implementation on android architecture allowing the application to be used with a

variety of devices.
• Robust algorithm based on the generalized Hough Transform for the detection of circles,

allowing coins to be detected at a variety of distances and orientations.
• Size robust size detection algorithm allowing for accurate count of different coins in a given

currency based on their relative sizes.

1.4: Features
• Detects an arbitrary number of quarters, nickels and dimes, as well as one, two, five, and ten

Mexican peso coins from a given image taken with the android camera.
• Displays to the user an accurate count of the total currency present, as well as the quantity of

each type of coin.

2.0: LITERATURE REVIEW

INTRODUCTION
An object can be defined by its boundaries and this provides fundamental information for multiple

purposes. The aim of this paper is to implement an edge detection algorithm using the Hough
transformation. The Hough transformation is an algorithm for edge detection which models changes in local
grey levels as a ramp function. This algorithm uses information to define a mapping from the orientation
of an edge point to a reference point of the shape. The Hough transform is described in particular for analytic
curves such as ellipses due to their importance in image recognition. This algorithm is generalized to
arbitrary shapes which are composed of sub shapes having well defined and easily computed Hough
transformations.

SUMMARY

 This paper starts by analyzing the Hough transform for analytic curves. It starts with the example
of a circle and details the means of extracting the directional information from this shape and using it to
perform the Hough transform, as well as how to compensate for errors in the transformation. The paper
next details the example of an ellipse. Since ellipses are such a common feature in everyday images, these
shapes can be used to analyze images which contain complex objects. The method of performing the Hough
transform for ellipses is explained, as well as its implementation and the trade offs involved in the
realization of its parameter space.

The Hough transform is then generalized to non analytic curves and provides a means of computing
the optimal set of parameters for a shape from its edge pixel data. This paper details earlier work on arbitrary
shapes in binary edge images and then describes a means of computing the R tables for arbitrary shapes.
Next this paper details several example shapes with fixed orientation and their R tables as well as the
generalization of these R table properties to shapes with variable orientation. This paper next details how
to use pairs of edges, find transforms for composite shapes and build convolution templates. Finally, this
paper speaks about incremental strategies for building shapes using arrays of sub shapes. Methods of using
locally consistent information to weight sub shapes and more complex strategies for intelligent weighting
and sub shape composition are discussed.

CONCLUSION

This research details a realization of the Hough transform, allowing the detection of arbitrary shapes
in an image in a manner that is invariant to scale changes, rotations, figure ground, reversals, and reference
point translations. This algorithm uses the boundary of the shape to construct its R table in a manner which
requires a comparable number of operations to the number of boundary points on the shape. This paper also
describes a method for constructing the R table for a shape composed of sub shapes from the R tables for
each sub shape. This method allows a shape to be expediently detected by means of detecting sequential
sub shapes until a desired confidence level for detection has been reached. The paper also describes a means
of weighting the accumulator tables for shapes in terms of locally consistent information in order to weight
sub shapes in importance for recognition. Finally, the generalized Hough transform algorithms presented
in this paper are parallel algorithms, allowing for faster computation time. Future work will focus on the
characterization of this algorithm’s computational efficiency and its feasibility as a model for object
perception by biological entities.

3.0: DESIGN
3.1: Block Diagram

Figure 1: High Level Block Diagram

3.2: Block Descriptions
Android Architecture

• INPUTS: Camera of android device.
• DESCRIPTION: This block consists of the skeleton project files that were available to us

in Lab 5 for parsing images from the camera of the Google Nexus 7 tablet, storing the
image data in a buffer in YUV format, and displaying output data on the android device.
We will then be able to apply the Hough Transform and coin detection algorithms directly
to this data and use Eclipse and native C code to build our project.

• OUTPUTS: Display of android device.

Hough Transform Coin Detector

• INPUTS: Image output from android architecture
• PURPOSE: This block will take the image data from the buffer and apply the Hough

transform to the Y channel in order to detect coins.
• OUTPUTS: Number of coins detected and their relative sizes to currency converter.

Currency Converter

• INPUTS: Transformed image with coins detected
• DESCRIPTION: This block will take the Hough Transform of the image with the detected

coins, calculate the relative sizes between the coins in order to find the total number of
each type of coin, and output the total currency to the monitor. Size detection requires the
use of a ratio per pixel methodology which compares the relative sizes of the coins to
standard size ratios found with a digital caliper. Once the various coins have been identified
as either penny, nickel, dime, and quarter, one, two, five or ten-peso coin, calculating the
currency value of all coins in the image requires a simple algebraic calculation with the
current currency exchange.

• OUTPUTS: Currency total to display

3.3: Design Considerations
 We created an application which could detect quarters, nickels, and dimes within an image
containing at least one quarter or ten-peso coin. We implemented US and Mexican Currency. We
neglected to detect pennies because larger numbers of pennies are needed to produce a significant
currency value. For the purposes of this lab, we wanted to test our application on images with a
small number of coins taking up a larger portion of the image in order to ensure high accuracy, so
including pennies to start with was not a good design choice. Also, the ratio of the radius of the
penny to that of the dime is so small that feature detection would need to be used, adding
computation time to our algorithm and limiting its portability for mobile devices. Finally, we
assumed a quarter or ten-peso coin would be present because this is the most common currency
unit, and this assumption allowed us to achieve higher accuracy. Since the ratio of the radius of
the quarter to that of the nickel is similar to that of the nickel to that of the dime, including the
quarter allowed us to accurately detect coins without the high granularity in the radius needed if
the dime is in fact the largest coin, and without the extra computation needed to check every
combination of all of the radii. This increased our runtime and the portability of our application.

4.0: RESULTS
4.1: MATLAB Software
 The first stage of our design process was to prototype our function in MATLAB for US
currency. We wrote a script which first computed the canny edge image and called ‘imfindcircles’,
an existing MATLAB library for circle detection. Our algorithm computes the the maximum
radius, which we assume to be the quarter, and finds the ratio of all the other radii to this radius.
We found experimentally that the ratio of the radius of the nickel to that of the quarter is less than
0.94, and that the ratio of the radius of the dime to that of the quarter is less than 0.82. These are
used as thresholds to increment the counters for quarters, nickels, and dimes, which are weighted
appropriately to give the total currency value. Our program gave accurate results for over several
trials as detailed in Table 1 below. This software was extended to function analogously for
Mexican pesos. The code for both of these implementations is provided in Appendix A.

Table 1: MATLAB Coin Detection Examples for USD
RGB Black and White Canny N D Q T $

1 9 1 11 1.2

1 7 1 9 1

1 9 2 12 1.45

2 2 2 6 0.8

6 23 4 33 1.6

4.2: C Software
 This program implements our MATLAB algorithm using Open Computer Vision on an
Android platform. Our algorithm first uses a Gaussian blur function from the Open Computer
Vision library to reduce the noise in the image, and then passes the image into a function
‘HoughCircles’, which is analogous to ‘imfindcircles’ from MATLAB. The parameters of these
function were chosen according to the design considerations detailed in Table 2 and Table 3
below. This function returns a vector found circles which contains the radii and centers of the
circles detected. The ratio of the radii to that of the largest radius is found as before and used to
compute the currency value represented in the image with the same thresholds found via our
MATLAB prototyping process. Finally, the circle centers and radii are used to draw them in the
image for display to the user with the currency value. As mentioned above, we extended our
software implementation to work for both US dollars and Mexican Pesos. The results for several
examples are shown in Table 4 and Table 5 below, showing the high accuracy of this program.
The code for our algorithms for US and Mexican coin detection is provided in Appendix B and
the code for the software interface with the android platform is provided in Appendix C.

Table 2: Design Considerations for Gaussian Blur
Function: void GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY=0, int
borderType=BORDER_DEFAULT2

Parameter Description Value Design Considerations
src Input image src_gray This is the input image buffer from the Android camera

is used as input to the circle detection.
dst Output Image src_gray Storing the output back into the same buffer conserves

memory and increases runtime.

ksize Kernel Size Size(9,9) This is the size of the kernel used in the Gaussian blur
function. We have chosen 9 by 9, a standard size for this
function.

sigmaX Kernal Standard Deviation X 2 The standard deviation in X is 2 which is common.

sigmaY Kernal Standard Deviation Y 2 The standard deviation in Y is 2 which is also common.

Table 3: Design Considerations for Hough Circles
Function: void HoughCircles(InputArray image, OutputArray circles, int method, double dp, double minDist,
double param1=100, double param2=100, int minRadius=0, int maxRadius=0)3

Parameter Value Design Considerations
image Input image src_gray This is the input image buffer from the Android

camera which is used as input to the circle
detection algorithm.

circles Vector of circles circles This is the vector circles, which stores an array
of circle radii and centers.

method Detection method CV_HOUGH_GRADIENT This is the method specified for circle
detection, currently the only one available.

dp Ratio of Image to
Accumulator
Resolution

1 The ratio of image to accumulator resolution is
chosen to be unity. Higher accumulator
resolution provides greater accuracy as circles
with higher accumulator thresholds are flagged
with higher accuracy for display. The unity
ratio provides the largest possible accumulator
resolution and thus the largest granularity to
flag circle accuracy.

minDist Minimum distance
between circles

50 This parameter specifies the minimum distance
between circles necessary for accurate
detection. In our case, this parameter ensures
that invalid circles, such as concentric circles
within coins, are not detected.

Param1 Higher threshold of
canny edges

255 This is the larger threshold for canny edges,
specifying the maximum intensity for pixel
values, in our case 255.

Param2 Accumulator
detection threshold

30 This is the accumulator threshold necessary for
a circle to be flagged as valid for display.

minRadiu
s

Minimum radius 10 This is the minimum circle radius necessary for
a valid circle to be displayed. Setting this
parameter to 10 prevents spurious circles from
being detection, while still allowing coins to be
detection in images taken from larger distance.

maxRadiu
s

Maximum circle
radius

200 This is the maximum radius for circle
detection. This parameter to prevents spurious
circles from being detection on the around the
boundary of a group of closely spaced coins,
while still allowing coins to be detected in
images taken from a smaller distance.

Table 4: OpenCV Coin Detection Examples for USD
RGB Black and White N D Q T $

1 2 1 4 0.5

2 2 2 6 0.8

1 0 2 0 0.45

5 7 11 23 2.7

Table 5: OpenCV Coin Detection Examples for Mexican Pesos
RGB Black and White U D

o
C D

i
$

1 0 3 1 26

2 1 1 1 19

3 3 3 1 34

3 3 3 2 44

5.0: SUGGESTIONS FOR EXTENSIONS AND MODIFICATIONS

5.1: Future Goals
 Our coin program can easily be extended to function for a number of user specified
currencies. A database would be implemented which would store the relative radii of coins in other
currency systems and a simple case would be used to switch the thresholds to those appropriate
for the chosen currency. This program provides a proof of concept for extension to an application
capable of facilitating international currency exchange. For specific currency systems, feature
detection and relative color intensity could be used to distinguish between coins which are of the
same size. Finally, histogram equalization could be used to improve contrast in low light
conditions and ellipse detection could be implemented on faster systems to enable high accuracy
for images taken at an angle. This would enable the creation of automated systems which use a
gantry and a real time camera to count large numbers of coins before sorting.

APPENDIX A: MATLAB SOFTWARE
A.1: US Dollars
clear, clc %Clear workspace and command window
q=0; n=0; d=0; level=0.55; %Initialize variables
A = imread('monedas11.JPG'); %Read in RGB image
figure; imshow(A) %Display RGB Image
I = im2bw(A, level); %Compute Black and White Image
figure;imshow(I) %Display Black and White Image
I = edge(I,'canny'); %Compute Canny Edge Image
figure; imshow(I) %Display Canny Edge Image

[centers1, radii1, metric1] = imfindcircles(I, [7 21]); %Detect Circles1
[centers2, radii2, metric2] = imfindcircles(I, [22 66]); %Detect Circles2
radii=[radii1; radii2]; %Vector of radii

maxrad=max(radii); %Find maximum radius
relradius=radii/max(radii); %Compute the vector of ratio radii
i=1; %Initialize I to zero
while i<length(relradius)+1 %Loop through radius array
 if relradius(i)<0.82 %For all radii less than the dime
 d=d+1; %Increment the number of dimes
 elseif relradius(i)<0.94 %For all radii less than the nickel
 n=n+1; %Increment number of nickels
 elseif relradius(i)<1.01 %For all radii less than the quarter
 q=q+1; %Increment number of Quarters
 end %End if
 i=i+1; %Increment i
end

n, d, q %total nickels, dimes, and quarters
total_coins=q+n+d %total coins
money=(q*25+d*10+n*5)/100 %total money ($)

A.2: MEX Pesos
clear, clc %Clear workspace and command window
uno=0; dos=0; cinco=0; diez=0; level=0.55; %Initialize variables
A = imread('monedas24.JPG'); %Read in RGB image
figure; imshow(A) %Display RGB Image
I = im2bw(A, level); %Compute Black and White Image
figure;imshow(I) %Display Black and White Image
I = edge(I,'canny'); %Compute Canny Edge Image
figure; imshow(I) %Display Canny Edge Image

[centers1, radii1, metric1] = imfindcircles(I, [7 21]); %Detect Circles1
[centers2, radii2, metric2] = imfindcircles(I, [22 66]); %Detect Circles2
radii=[radii1; radii2]; %Vector of radii

maxrad=max(radii); %Find maximum radius
relradius=radii/max(radii); %Compute the vector of ratio radii
i=1; %Initialize I to zero
while i<length(relradius)+1 %Loop through radius array
 if relradius(i)<0.805 %For all radii less than the uno
 uno=uno+1; %Increment the number of uno
 elseif relradius(i)<0.89 %For all radii less than the dos
 dos=dos+1; %Increment number of dos
 elseif relradius(i)<0.96 %For all radii less than the cinco
 cinco=cinco+1; %Increment number of cinco
 elseif relradius(i)<1.01 %For all radii less than the diez
 diez=diez+1; %Increment number of diez
 end %End if
 i=i+1; %Increment i
end

uno,dos,cinco,diez %total unos, doses, cincos, dieces
total_coins= uno+dos+cinco+diez %total coins
money = uno+dos*2+cinco*5+diez*10 %total money ($)

APPENDIX B: C SOFTWARE CODE
#include <jni.h>
#include <opencv2/core/core.hpp>
#include <android/log.h>

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <string.h>

using namespace std;
using namespace cv;

extern "C" {

// function declaration for manual color conversion
int convertYUVtoARGB(int, int, int);

JNIEXPORT void JNICALL Java_org_ece420_lab5_Sample4View_YUV2RGB(JNIEnv*, jobject, jlong addrYuv, jlong
addrRgba)
{
 Mat* pYUV=(Mat*)addrYuv;
 Mat* pRGB=(Mat*)addrRgba;

 /*INSERT CODE TO CONVERT AN ENTIRE IMAGE FROM FROM YUV420sp TO ARGB*/
 int width = pYUV -> cols;
 int height = (pYUV -> rows)*2/3;
 int u, v, y1, y2, y3, y4;
 int index = 0;

 for(int j=0; j<height; j+=2)
 {
 for(int i=0; i<width; i+=2)
 {
 y1 = pYUV->at<uchar>(j,i)&0xff;
 y2 = pYUV->at<uchar>(j,i+1)&0xff;
 y3 = pYUV->at<uchar>(j+1,i)&0xff;
 y4 = pYUV->at<uchar>(j+1,i+1)&0xff;

 u = pYUV->at<uchar>(index/width+height,index%width)&0xff;
 v = pYUV->at<uchar>(index/width+height,index%width+1)&0xff;

 pRGB->at<int>(j,i) = convertYUVtoARGB(y1, u, v);
 pRGB->at<int>(j,i+1) = convertYUVtoARGB(y2, u, v);
 pRGB->at<int>(j+1,i) = convertYUVtoARGB(y3, u, v);
 pRGB->at<int>(j+1,i+1) = convertYUVtoARGB(y4, u, v);

 index+=2;
 }
 }
}

JNIEXPORT double JNICALL Java_org_ece420_lab5_Sample4View_HistEQ(JNIEnv* env, jobject thiz, jlong addrYuv,
jlong addrRgba)
{
 Mat* pYUV=(Mat*)addrYuv;
 Mat* pRGB=(Mat*)addrRgba;

 Mat src_gray;

 int d=0;
 int n=0;
 int q=0;
 int total_coins=0;
 double currency=0;
 int threshold_value=50;

 int Max_Binary_Value=100;

 vector<Vec3f> circles;

 // convert to rgb and store
 Java_org_ece420_lab5_Sample4View_YUV2RGB(env, thiz, addrYuv, addrRgba);

 // Convert it to gray
 cvtColor(*pRGB, src_gray, CV_BGR2GRAY);

 //convert it to binary
 //threshold(src_gray,src_gray,threshold_value,Max_Binary_Value,0);

 GaussianBlur(src_gray,src_gray,Size(9,9),2,2);

 // Apply the Hough Transform to find the circles
 HoughCircles(src_gray, circles, CV_HOUGH_GRADIENT, 1, 50, 255, 30, 10, 200);
 double radius[(int) circles.size()];
 double relradius[(int) circles.size()];
 double max_radius;
 max_radius=0;

 for(size_t i = 0; i < circles.size(); i++)
 {
 radius[i] = cvRound(circles[i][2]);
 if(radius[i]>max_radius)
 {
 max_radius=radius[i];
 }
 }

 for(size_t i = 0; i < circles.size(); i++)
 {
 relradius[i]=radius[i]/max_radius;
 // Draw the circles detected
 Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
 // circle center
 circle(*pRGB, center, 3, Scalar(0,255,0), -1, 8, 0);
 // circle outline
 circle(*pRGB, center, radius[i], Scalar(0,0,255), 3, 8, 0);

 if (relradius[i] < 0.82){
 d++;
 }
 else if (relradius[i] < 0.94){
 n++;
 }
 else if (relradius[i] < 1.01){
 q++;
 }
 }

 total_coins=q+n+d;
 currency=(q*25.0+d*10.0+n*5.0)/100.0;
 char text[200];
 //sprintf(text,"Size: %d %d",relradius[0], relradius[1]);
 sprintf(text,"$: %f, Q: %d, N: %d, D: %d",currency,q,n,d);
 int fontFace = FONT_HERSHEY_DUPLEX;
 double fontScale = 1.5;
 int thickness = 3;

 int baseline=0;
 Size textSize = getTextSize(text, fontFace,
 fontScale, thickness, &baseline);
 baseline += thickness;

 // center the text
 Point textOrg((src_gray.cols - textSize.width)/2,
 (textSize.height)*2);

 // draw the box
 rectangle(*pRGB, textOrg + Point(0, baseline),
 textOrg + Point(textSize.width, -textSize.height),
 Scalar(0,0,255));
 // ... and the baseline first
 line(*pRGB, textOrg + Point(0, thickness),
 textOrg + Point(textSize.width, thickness),
 Scalar(0, 0, 255));

 // then put the text itself
 putText(*pRGB, text, textOrg, fontFace, fontScale,
 Scalar(0, 0, 180), thickness, 8);

 return currency;
}

JNIEXPORT double JNICALL Java_org_ece420_lab5_Sample4View_HistEQ1(JNIEnv* env, jobject thiz, jlong
addrYuv, jlong addrRgba)
{
 Mat* pYUV=(Mat*)addrYuv;
 Mat* pRGB=(Mat*)addrRgba;

 Mat src_gray;

 int uno=0;
 int dos=0;
 int cinco=0;
 int diez=0;
 int total_coins=0;
 int currency=0;
 int threshold_value=50;
 int Max_Binary_Value=100;

 vector<Vec3f> circles;

 // convert to rgb and store
 Java_org_ece420_lab5_Sample4View_YUV2RGB(env, thiz, addrYuv, addrRgba);

 // Convert it to gray
 cvtColor(*pRGB, src_gray, CV_BGR2GRAY);

 //convert it to binary
 //threshold(src_gray,src_gray,threshold_value,Max_Binary_Value,0);

 GaussianBlur(src_gray,src_gray,Size(9,9),2,2);

 // Apply the Hough Transform to find the circles
 HoughCircles(src_gray, circles, CV_HOUGH_GRADIENT, 1, 50, 255, 30, 10, 200);
 double radius[(int) circles.size()];
 double relradius[(int) circles.size()];
 double max_radius;
 max_radius=0;

 for(size_t i = 0; i < circles.size(); i++)
 {
 radius[i] = cvRound(circles[i][2]);
 if(radius[i]>max_radius)
 {
 max_radius=radius[i];
 }
 }

 for(size_t i = 0; i < circles.size(); i++)
 {
 relradius[i]=radius[i]/max_radius;
 // Draw the circles detected
 Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
 // circle center

 circle(*pRGB, center, 3, Scalar(0,255,0), -1, 8, 0);
 // circle outline
 circle(*pRGB, center, radius[i], Scalar(0,0,255), 3, 8, 0);

 if (relradius[i] < 0.80){
 uno++;
 }
 else if (relradius[i] < 0.87){
 dos++;
 }
 else if (relradius[i] < 0.965){
 cinco++;
 }
 else if (relradius[i] < 1.01){
 diez++;
 }
 }

 total_coins=uno+dos+cinco+diez;
 currency=uno+dos*2+cinco*5+diez*10;
 char text[200];
 //sprintf(text,"Size: %d %d",relradius[0], relradius[1]);
 sprintf(text,"$: %d, U: %d, Do: %d, C: %d, Di: %d ",currency, uno, dos, cinco, diez);
 int fontFace = FONT_HERSHEY_DUPLEX;
 double fontScale = 1.5;
 int thickness = 3;

 int baseline=0;
 Size textSize = getTextSize(text, fontFace,
 fontScale, thickness, &baseline);
 baseline += thickness;

 // center the text
 Point textOrg((src_gray.cols - textSize.width)/2,
 (textSize.height)*2);

 // draw the box
 rectangle(*pRGB, textOrg + Point(0, baseline),
 textOrg + Point(textSize.width, -textSize.height),
 Scalar(0,0,255));
 // ... and the baseline first
 line(*pRGB, textOrg + Point(0, thickness),
 textOrg + Point(textSize.width, thickness),
 Scalar(0, 0, 255));

 // then put the text itself
 putText(*pRGB, text, textOrg, fontFace, fontScale,
 Scalar(180, 0, 0), thickness, 8);

 return currency;
}

int convertYUVtoARGB(int y, int u, int v) {
 /*INSERT CODE TO CONVERT A YUV PIXEL TO A 32-BIT INT REPRESENTING AN ARGB PIXEL*/
 int r,g,b;

 r = y + (int)(1.370705 * (v-128));
 g = y - (int)(0.698001 * (v-128)) - (0.337633 * (u-128));
 b = y + (int)(1.732446 * (u-128));

 r = r > 255 ? 255 : r < 0 ? 0 : r;
 g = g > 255 ? 255 : g < 0 ? 0 : g;
 b = b > 255 ? 255 : b < 0 ? 0 : b;

 return 0xff000000 | (r<<16) | (g<<8) | b;

APPENDIX C: JAVA CODE

C.A: SAMPLE4VIEW
package org.ece420.lab5;

import org.opencv.android.Utils;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.imgproc.Imgproc;

import android.content.Context;
import android.graphics.Bitmap;
import android.util.Log;

class Sample4View extends SampleViewBase {
 private static final String TAG = "OCVSample::View";

 public static final int VIEW_MODE_GRAY = 0;
 public static final int VIEW_MODE_RGBA = 1;
 public static final int VIEW_MODE_HISTEQ = 2;

 private Mat mYuv;
 private Mat mRgba;
 private Mat mGraySubmat;
 private Bitmap mBitmap;
 private int mViewMode;
 private int first;

 public Sample4View(Context context) {
 super(context);
 }

 @Override
 protected void onPreviewStarted(int previewWidth, int previewHeight) {
 Log.i(TAG, "called onPreviewStarted("+previewWidth+", "+previewHeight+")");

 // initialize Mats before usage
 mYuv = new Mat(getFrameHeight() + getFrameHeight() / 2, getFrameWidth(), CvType.CV_8UC1);
 mGraySubmat = mYuv.submat(0, getFrameHeight(), 0, getFrameWidth());

 // allocate space now because are using our own color conversion function
 mRgba = new Mat(getFrameHeight(), getFrameWidth(), CvType.CV_8UC4);

 mBitmap = Bitmap.createBitmap(previewWidth, previewHeight, Bitmap.Config.ARGB_8888);
 }

 @Override
 protected void onPreviewStopped() {
 Log.i(TAG, "called onPreviewStopped");

 if (mBitmap != null) {
 mBitmap.recycle();
 mBitmap = null;
 }

 synchronized (this) {
 // Explicitly deallocate Mats
 if (mYuv != null)
 mYuv.release();
 if (mRgba != null)
 mRgba.release();
 if (mGraySubmat != null)
 mGraySubmat.release();

 mYuv = null;
 mRgba = null;
 mGraySubmat = null;
 }

 }

 @Override
 protected Bitmap processFrame(byte[] data) {
 // data from camera is in YUV420sp format
 mYuv.put(0, 0, data);

 final int viewMode = mViewMode;

 if(viewMode==VIEW_MODE_GRAY){
 // opencv's color conversion function
 Imgproc.cvtColor(mGraySubmat, mRgba, Imgproc.COLOR_GRAY2RGBA, 4);
 first=1;
 }
 if(viewMode==VIEW_MODE_RGBA){
 // apply equalization to Y channel and convert to RGB
 if(first==1){
 double currency;
 currency=HistEQ1(mYuv.getNativeObjAddr(), mRgba.getNativeObjAddr());
 first=0;
 }
 }
 if(viewMode==VIEW_MODE_HISTEQ){
 // apply equalization to Y channel and convert to RGB
 if(first==1){
 double currency;
 currency=HistEQ(mYuv.getNativeObjAddr(), mRgba.getNativeObjAddr());
 first=0;
 }
 }
 Bitmap bmp = mBitmap;

 try {
 Utils.matToBitmap(mRgba, bmp);
 } catch(Exception e) {
 Log.e("org.opencv.samples.puzzle15", "Utils.matToBitmap() throws an exception: " +

e.getMessage());
 bmp.recycle();
 bmp = null;
 }

 return bmp;
 }

 public native void YUV2RGB(long matAddrYUV, long matAddrRgba);
 public native double HistEQ(long matAddrYUV, long matAddrRgba);
 public native double HistEQ1(long matAddrYUV, long matAddrRgba);

 public void setViewMode(int viewMode) {
 Log.i(TAG, "called setViewMode("+viewMode+")");
 mViewMode = viewMode;
 }
}

C.2: Sample4Mixed
package org.ece420.lab5;

import org.opencv.android.BaseLoaderCallback;
import org.opencv.android.LoaderCallbackInterface;
import org.opencv.android.OpenCVLoader;

import android.app.Activity;
import android.app.AlertDialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import android.view.Window;
import android.view.WindowManager;

public class Sample4Mixed extends Activity {
 private static final String TAG = "OCVSample::Activity";

 private MenuItem mItemPreviewRGBA;
 private MenuItem mItemPreviewGray;
 private MenuItem mItemPreviewHistEq;
 private Sample4View mView;

 private BaseLoaderCallback mOpenCVCallBack = new BaseLoaderCallback(this) {
 @Override
 public void onManagerConnected(int status) {
 switch (status) {
 case LoaderCallbackInterface.SUCCESS:
 {
 Log.i(TAG, "OpenCV loaded successfully");

 // Load native library after(!) OpenCV initialization
 System.loadLibrary("mixed_sample");

 // Create and set View
 mView = new Sample4View(mAppContext);
 setContentView(mView);

 // Check native OpenCV camera
 if(!mView.openCamera()) {
 AlertDialog ad = new AlertDialog.Builder(mAppContext).create();
 ad.setCancelable(false); // This blocks the 'BACK' button
 ad.setMessage("Fatal error: can't open camera!");
 ad.setButton(AlertDialog.BUTTON_POSITIVE, "OK", new

 DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {
 dialog.dismiss();
 finish();
 }
 });
 ad.show();
 }
 } break;

 /** OpenCV loader cannot start Google Play **/
 case LoaderCallbackInterface.MARKET_ERROR:
 {
 Log.d(TAG, "Google Play service is not accessible!");
 AlertDialog MarketErrorMessage = new

 AlertDialog.Builder(mAppContext).create();
 MarketErrorMessage.setTitle("OpenCV Manager");
 MarketErrorMessage.setMessage("Google Play service is not accessible!\nTry to

install the 'OpenCV Manager' and the appropriate 'OpenCV binary
pack' APKs from OpenCV SDK manually via 'adb install' command.");

 MarketErrorMessage.setCancelable(false); // This blocks the 'BACK' button
 MarketErrorMessage.setButton(AlertDialog.BUTTON_POSITIVE, "OK", new

DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {

 ((Activity) mAppContext).finish();
 }
 });
 MarketErrorMessage.show();
 } break;
 default:
 {
 super.onManagerConnected(status);
 } break;
 }
 }
 };

 public Sample4Mixed() {
 Log.i(TAG, "Instantiated new " + this.getClass());
 }

 @Override
 protected void onPause() {
 Log.i(TAG, "called onPause");
 if (null != mView)
 mView.releaseCamera();
 super.onPause();
 }

 @Override
 protected void onResume() {
 Log.i(TAG, "called onResume");
 super.onResume();

 Log.i(TAG, "Trying to load OpenCV library");
 if (!OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_2, this, mOpenCVCallBack)) {
 Log.e(TAG, "Cannot connect to OpenCV Manager");
 }
 }

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 Log.i(TAG, "called onCreate");
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 Log.i(TAG, "called onCreateOptionsMenu");
 mItemPreviewGray = menu.add("Take Photo");
 mItemPreviewRGBA = menu.add("Apply Coin Detection Mexican Pesos");
 mItemPreviewHistEq = menu.add("Apply Coin Detection USD");
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 Log.i(TAG, "called onOptionsItemSelected; selected item: " + item);
 if (item == mItemPreviewRGBA) {
 mView.setViewMode(Sample4View.VIEW_MODE_RGBA);
 } else if (item == mItemPreviewGray) {
 mView.setViewMode(Sample4View.VIEW_MODE_GRAY);
 } else if (item == mItemPreviewHistEq) {
 mView.setViewMode(Sample4View.VIEW_MODE_HISTEQ);
 }
 return true;
 }
}

6.0: WORKS CITED

[1] Ballard, Dana H. “Generalizing the Hough transform to detect arbitrary shapes.” Pattern
recognition 13.2 (1981): 111-122.

[2] "Image Filtering — OpenCV 2.4.13.1 documentation", Docs.opencv.org, 2016. [Online].
Available: http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight
=gaussianblur. [Accessed: 23- Nov- 2016].

[3] "Feature Detection — OpenCV 2.4.13.1 documentation", Docs.opencv.org, 2016. [Online].
Available: http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight
=houghcircles. [Accessed: 23- Nov- 2016].

