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INTRODUCTION: 
 For our final project we decided to create a System Verilog Implementation of Mario. We 
wanted to design a game which allowed us to showcase the skills we learned this semester by 
creating hardware architecture which drew high quality graphics and performed at speeds above 
a software implementation on a comparable platform. We designed our own custom graphics and 
went through a long design process to draw dynamic sprites on top of custom background 
images with very little memory usage and high graphical processing speeds. We implemented all 
the game mechanics in hardware in order to ensure faster performance. 
 
OVERVIEW OF GAMEPLAY: 
 This implementation of Mario has one level. Mario can collect coins by bumping into the 
bottom of a coin block and then colliding with the coin which then appears on top of this block. 
Mario must also avoid two types of monsters, Flying Koopas, which move up and down, and 
Goombas which move side to side along the ground. Mario will die if he collides with the 
monsters in any other fashion than by jumping on top of them, in which case the monster will 
die. The game ends when Mario Jumps on the pipe, in which case a second level could be added. 
This game was implemented in such a manner as to provide scalability, using custom graphics 
and an efficient all hardware implementation for higher performance. The reasoning behind 
using only one level is that we designed our code in such a way as to be scalable. We minimized 
the usage of memory and maximized processing efficiency. Focusing on only one level allowed 
us to perfect our game mechanics, and as extension to multiple levels is trivial, we decided this 
was more important than having a game with larger scale. The design process for two levels has 
been completed and shown below. The code mechanics remain the same. A star sprite was added 
to the design in the case that an end game state is desired. 
 
GRAPHICAL DESIGN PROCESS AND GRAPHICAL PROCESSING METHOD: 
 Part of our goal for designing this game was to be able to display custom graphics on an 
arbitrary background image. We first realized that in order to do this we would have to load and 
display full color images on the FPGA. We realized early on that we would have to use 8-bit 
color to do this. In order not to sacrifice graphical quality we decided to build our game with 
images which we could easily store as a 256 color dithered BMPs, an image format which 
processes an image as a color table of 256, 24-bit colors, with each pixel stored as an index into 
this color table. We first found a background image, shown below, that was clearly designed to 
be drawn using sprites and matched the contrast requirements to look satisfactory in a 256 
dithered format. 

Original Level Image Used to Generate Our Game Levels 

 



 From this we created two levels which matched our specifications exactly.  
Level 1 Level 2 

  
 We initially thought of just storing the background images as raw index arrays and color 
tables inside the on chip memory of the FPGA. This would actually be feasible for a small scale 
game. However, we decided it would be more effective to draw the images as arrays of tiles on a 
background color. We created two structure files which indexed 256 color images into only a 
three-bit array of seven sprites plus the background color, shown below. 
Level 1 Structure Level 2 Structure 

  
 Carful inspection of these images will show that they consist of seven pixel colors 
interspersed on a blue background, following the conventions detailed in the table below. The 
blue background only provides a soft backdrop that is more pleasing to the eye when changing 
pixel locations for long periods of time. 
Sprite Color Red Green Blue 
Cloud White 255 255 255 
Unassigned Red 255 0 0 
Shrub Green 0 255 0 
Background Blue 0 0 255 
Cyan Pipe 0 255 255 
Magenta Ground 255 0 255 
Yellow Coin Block 255 255 0 
Black Block 0 0 0 



 This allowed us to create a more compact representation of the background which 
allowed for better scalability. We wrote C++ code using the Easy BMP library to process these 
images into an array of three bit values, which will be discussed in detail in the following 
section. We then thought of storing these arrays in memory and using them to populate the 
background. However, we realized that this would still require significant hardware overhead to 
locate the specific pixel locations within the image array. We realized that we could extend our 
C++ code to create an array of X and Y position values for all the background sprites for each 
level, which would allow us to effectively pre process a large quantity of image structures at 
scale and give us the capability of extending our game to an arbitrary size. We use two levels in 
this implementation for simplicity, choosing to store all the location arrays in register memory 
for ease of access. However, our method as well as the C++ code we wrote allows for ROM files 
to be created with ease. As the on chip memory of the Cyclone IV FPGA is thousands of times 
larger than the register memory, our game could be extended to an almost infinite number of 
levels, allowing for scalable game implementation on this hardware platform.  
 Once we had created the background structure for our game we set about completing the 
graphical design and processing phase by creating the necessary structures for the display of an 
arbitrary number of sprites on our background images. We decided to make almost all of our 
sprites 32 by 32, to allow for ease of processing and storage. We came up with thumbnails of all 
of our desired sprites for display, as shown below 

Dynamic Sprites 
Coin Goomba Flying Koopa Koopa 

    
Mario Star 

  
Static Sprites 

Cloud Shrub Pipe Coin Block Block 

     
Ground 

 
 After this point, it was only a matter of processing our sprites with the Easy BMP library. 
With this library we were able to load BMP images which had been processed as 256 dithered 
BMPs. We generated these images by finding a Linux program that could perform the processing 
and running it in a sandbox. We decided to use a purple background color for all the sprites in 
order to ensure that we could recognize this distinct background color and have our logic draw 
other sprites behind it if needed. Our processed sprites are shown below. 
 
 
 
 



Dynamic Sprites 
Coin Goomba Flying Koopa Koopa 

    
Mario Star 

  
Static Sprites 

Cloud Shrub Pipe Coin Block Block 

     
Ground 

 
 Our C++ code then loaded the color table a master image, shown below, which contained 
all our sprites on top of one of our background images, plus a thumbnail of our purple 
transparent color. This allowed it to create a color pallet of 256, 24-bit entries which fully 
encapsulated the color spectrum of all our graphical structures.  

Master Color Image 

 
 It was then a simple matter of using the BMP library to generate sprite tables for all our 
images which we could store on the On Chip Memory of the FPGA. We simply looped through 
each image and looked up each pixel color in the color palette and generated an array of indexes 
which we stored in an array, like the one shown below for the star sprite 



sprite5 <=  
'{ 
'{215,215,215,215,215,215,215,215,215,215,215,215,215,215,215,212,170,215,215,215,215,215,215,215,215,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,215,215,215,215,215,215,215,215,213,212,205,178,215,215,215,215,215,215,215,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,215,215,215,215,215,215,215,215,205,212,211,170,215,215,215,215,215,215,215,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,215,215,215,215,215,215,215,177,212,213,205,169,214,215,215,215,215,215,215,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,215,215,215,215,215,215,215,211,206,213,212,204,171,215,215,215,215,215,215,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,215,215,215,215,215,215,207,211,212,213,212,211,162,215,215,215,215,215,215,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,215,215,215,215,215,215,175,205,213,213,212,211,168,164,215,215,215,215,215,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,215,215,215,215,215,208,211,212,213,213,212,211,211,126,215,215,215,215,215,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,215,215,215,215,215,205,211,213,213,213,212,212,211,168,170,215,215,215,215,215,209,215,215,215,215,215,}, 
'{215,215,215,215,215,209,215,214,172,214,170,211,212,213,207,212,212,212,211,205,169,171,208,178,215,215,215,215,215,215,215,215,}, 
'{215,215,208,214,171,212,176,205,211,211,212,212,213,213,213,213,206,212,212,211,211,210,205,211,169,206,177,207,178,208,215,215,}, 
'{212,176,212,211,212,212,212,212,213,212,213,213,213,177,213,212,212,212,169,212,211,211,211,211,211,211,211,211,211,211,169,171,}, 
'{206,211,211,206,212,212,206,213,213,213,213,213,128,79,170,213,212,176,79,169,212,211,212,211,211,211,211,211,205,205,168,171,}, 
'{215,169,210,211,211,212,212,212,213,207,213,176,122,129,170,212,212,128,129,127,212,211,211,212,211,205,211,168,168,126,171,215,}, 
'{215,215,170,168,211,211,211,212,212,212,212,206,128,129,170,212,212,127,129,85,212,211,205,211,211,204,169,168,162,171,215,215,}, 
'{215,215,215,169,204,205,211,211,211,212,212,176,43,42,170,212,212,163,42,85,211,211,211,169,204,169,168,126,171,215,215,215,}, 
'{215,215,215,215,169,168,174,205,211,211,211,212,42,255,170,211,212,127,255,84,211,211,204,169,168,162,126,171,215,215,215,215,}, 
'{215,215,215,215,208,169,204,210,211,205,212,211,42,255,205,211,211,169,255,85,211,205,168,169,168,126,170,215,215,215,215,215,}, 
'{215,215,215,215,215,215,169,168,211,211,211,211,127,85,212,211,211,169,85,168,205,210,169,168,162,127,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,172,168,205,211,211,211,211,211,211,211,211,211,211,211,169,204,169,162,128,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,215,206,210,210,205,211,211,211,211,211,211,211,210,205,210,169,168,162,171,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,215,211,211,211,211,211,211,211,204,211,204,205,168,211,168,205,168,126,171,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,215,169,211,211,211,211,204,211,168,205,174,205,210,169,204,169,168,162,170,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,214,210,211,205,210,211,169,210,169,168,168,169,168,205,168,169,168,162,134,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,207,211,210,211,175,205,204,168,168,168,168,168,168,168,204,168,169,168,127,208,215,215,215,215,215,215,}, 
'{215,215,215,215,179,215,177,210,211,205,204,168,168,163,162,126,162,162,168,163,168,168,162,168,126,215,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,207,210,211,168,168,168,126,126,126,170,127,126,126,168,126,168,162,169,162,172,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,176,204,205,168,168,126,126,164,172,215,215,171,163,126,162,126,168,126,168,171,215,215,215,215,215,215,}, 
'{215,215,215,215,215,215,205,210,168,126,126,163,172,215,215,215,215,215,215,171,127,126,132,162,162,170,215,215,215,215,215,215,}, 
'{215,215,215,215,215,214,211,168,126,163,172,215,215,215,215,215,215,215,215,215,215,171,163,126,132,164,215,215,215,215,215,215,}, 
'{215,215,215,215,215,208,168,127,171,215,215,215,215,215,215,215,215,215,215,215,215,215,178,171,162,127,214,215,215,215,215,215,}, 
'{215,215,215,215,215,178,171,214,215,215,215,215,215,215,215,215,215,215,215,215,215,215,215,215,172,171,215,215,215,215,215,215,}, 
}; 

Once we had completed this process all we had to do was figure out how to generate the 
required structures to implement the physics of our game. Initially we had thought of creating 
ghost images like the ones shown below to tell our physics engine where exactly the sprite was 
in relation to objects of interest.  

Level 1 Ghost Level 2 Ghost 

  
 We generated these images with the following four colors to tell our physics engine 
where space, and solid objects existed. We also added the capability to turn on coin blocks and 
find the pipe with these images. We used C++ code to generate a two-bit array. 
Object Meaning Color Red Green Blue 
Space Sprite can move White 255 255 255 
Wall Sprite Cannot Move Black 0 0 0 
Coin Block 
Bottom 

Turn Coin On Red 255 0 0 

Pipe Top Move to Next Level Green 0 255 0 
 After doing all this, we realized that we would run into the same issue that we had before 
with the background drawing image structures. We would be using more memory than we could 
use with a more efficient and scalable implementation. We decided to just check the position of 
each moving sprite against all the positions of our known static objects from the sprite position 



array generated from the image structure. This gave us the capability of handling the physics for 
an arbitrary number of objects with much less memory use and processing overhead.  
 Finally, we made a major design decision. We realized that if we did all the game 
mechanics in software, we would decrease the performance of the game overall due to 
handshaking time more than we were improving it due to the CPU processing capabilities. The 
number of sprites we had was simply large enough to make a full hardware implementation a 
valid consideration. We realized that with the initial position of all of the sprites, both static and 
dynamic, stored in memory, we could easily create simple hardware logic to update the position 
of the dynamic sprites during gameplay, and account for the game mechanics when these 
dynamic sprites came into contact with one another. We created several hardware modules to do 
this and eventually came up with a game design which was both more scalable than anything we 
had originally envisioned, and had far greater performance than we had hoped. 
 Given this decision, we scaled up the complexity of our level structures and scaled down 
the complexity of our master color image. With our new structures we only needed sprite 
graphics, so we created a final master color image, shown below, with our sprite images and all 
the colors used in our structure images. 

Final Master Color Image 

 
 We then used our expanded structure to populate the initial positons of our dynamic 
sprites as well. For convenience we simply cut the RGB values of our previous colors in half and 
stored them in the master color image as well. The table of color values with its set of associated 
sprites is shown below. 
Sprite Color Red Green Blue 
Cloud White 255 255 255 
Unassigned Red 255 0 0 
Shrub Green 0 255 0 
Background Blue 0 0 255 
Pipe Cyan 0 255 255 
Ground Magenta 255 0 255 
Coin Block Yellow 255 255 0 
Block Black 0 0 0 
Mario Light Red 128 0 0 
Koopa Light Green 0 128 0 
Goomba Light Blue 0 0 128 
Flying Koopa Light Cyan 0 128 128 
Star Light Magenta 128 0 128 
Coin Light Yellow 128 128 0 

 
 
 
 
 
 



 Finally, we generated our set of expanded structures and used our C++ code to populate 
an array of initial positions for every single one of our sprites. 

Level 1 Structure Final Level 2 Structure Final 

  
 When we tried to implement the 256 color scheme described above, we had a lot of 
problems with the implementation. We first tried storing all the sprite tables in ROM files. We 
got a static background image to display. However, we had a lot of timing issues which 
prevented us from drawing dynamic sprites. We decided to try storing all the sprite tables in 
registers. However, we were unable to access all the register index values and the color table 
color values for our sprites within one clock cycle, since the registers that were synthesized were 
combinational. 
 We decided to extend our 256 color scheme to 8-bit color. We used the exact same 
implementation that is described so far. However, we added another part into the C++ code 
which scanned the sprite images above using the same color table from the master color image. 
Then, instead of outputting the index of the color into the master color image color table, we 
parsed the Red, Green, and Blue values from the image. We then assigned three-bit values for 
Red and Green, and a two-bit value for Blue using the scheme summarized in the table below. 
We checked the range of the Red, Green and Blue values. For Red and Green, we assign the 
value to seven if the color was in the range from 255 to 223, six if it was in the range from 222 to 
190 and so on. For blue we assigned three if it was in the range from 255-191, two if it was in the 
range from 190 to 126 and so on. We then used this to create a three-bit array for red and green 
and a two-bit array for blue. We used these arrays in our graphics engine as summarized below 
to draw a set of different colors evenly distributed throughout the spectrum. This significantly 
reduced the resolution of our images but it decreased memory usage and processing time 
significantly and allowed us to display the sprites with ease. 
 

Red/Green/Blue Range 255-223 222-191 191-159 158-127 126-95 94-63 62-31 30-0 

Red/Green/Blue Index 111 110 101 100 011 010 001 000 
Red/Green/Blue Color 255 222 191 158 126 94 62 30 

 
We then ran into the problem of using our transparent color we needed some way to 

differentiate the purple background from another color in the same range, due to the decreased 
resolution. So, we added one bit to blue so the blue table looked like the following. We decided 



to fully utilize the last bit of blue so we could spread about the blue color spectrum as well and 
cut down on contrast issues. 

Red/Green Range 255-223 222-191 191-159 158-127 126-95 94-63 62-31 30-0 RGB=Purple 
Red/Green Index 111 110 101 100 011 010 001 000 N/A 
Red/Green Color 255 222 191 158 126 94 62 30 Transparent 

 
Red/Green/Blue Range 255-

219 
218-
183 

182-147 146-
111 

100-75 74-39 38-0 RGB=Purpose 

Red/Green/Blue Index 110 101 100 011 010 001 000 111 
Red/Green/Blue Color 255 222 191 158 126 94 62 N/A 

 This final image structure allowed us to successfully display eight-bit color images 
dynamically with far less memory usage than the previous 256-color scheme, and it speeded up 
our design significantly. 
 
IMMPLEMENTATION OF GRAPHICAL PROCESSING WITH EASY BMP (C++): 
 In order to process the above images to compile our game structure, we used the Easy 
BMP C++ library. This library has the capability to read the color palette from a BMP image and 
also read off the RGB values for an arbitrary pixel using the images own color table. In order to 
parse our images to create the proper structure, we first loaded the final master color image 
shown above and parsed the color table as a 256 entry, 24-bit array. We then used this color table 
to generate index arrays for all the sprite images of the form of the example shown above for the 
star sprite. Finally, we used the color pallet shown in the bottom left corner of the master color 
image to parse the structure images shown directly above for the X and Y values of the initial 
position of all our sprites. We then simply assigned the initial X and Y values of our position 
array for each set of sprites and for each level. 
 For our eight-bit color implementation, we simply scanned the BMP sprite images for the 
RGB values of each pixel and assigned the index values as describe above. We created three 
arrays for each sprite, one for Red, one for Green, and one for Blue. Finally, we processed these 
arrays to make register files in System Verilog in order to successfully implement the graphics 
scheme in hardware. 
 The code for our C++ implementation and the final images used are attached to this 
report. This code is highly scalable and can be used to generate an arbitrary number of levels of 
this type, if a larger game is to be created in the future. 
 
HARDWARE IMMPLEMETATION AND DESIGN: 

Top Level Block Diagram 

 
 



 In order to implement our design effectively in hardware, we created a two tiered 
hardware structure detailed in the top level block diagram shown above. Our top level module 
drove a finite state machine whose inputs were updated by our physics engine. This physics 
engine took in the position of our sprite and determined its relative position to all the other 
dynamic sprites. For all our sprites, we simply created an On Vector to turn each and every one 
of the sprites of the same type on or off during gameplay.  
 Our original design simply included one physics engine which used a motion vector to 
account for the physics of Mario and the monster sprites in one module. We did this by creating 
a motion vector for each monster whose mechanics is summarized in the following table. When 
controlling Mario, we simply asserted zero for motion which caused our physics engine to take 
input from the keyboard. When using a Flying Koopa, we simply pulled the motion vector high 
which caused our physics engine to have the Flying Koopa continuously jump after falling back 
to the ground. For the lateral motion of the Goombas we simply had two other values of the 
vector for left and right. We then had another module called Monster which set the motion 
vectors of each Goomba to a leftwards or rightwards motion. We simply had a counter which 
counted the distance of the Koopa or Goombas lateral motion and flipped the motion vector after 
this distance had been expended. We then created an entirely separate mechanics module for 
collisions between Mario and and the dynamic sprites such as the monsters and the coins and 
star. However, we ended up changing this design significantly  
Motion Meaning  Value 
None Motion for Mario 00 
Left Leftwards Motion for Koopas and Goombas  01 
Right Rightwards Motion for Koopas Goombas 10 
Up Upwards motion for Flying Koopas 11 

 We that our previous design wasted a lot of computation time as some of the 
computations for Mario were unnecessary for the monsters. After we simplified our design, our 
graphics engine ran a lot faster since it only needed to take input from one large physics block. 
We also simplified the IO between all our modules. We originally had all the updates of the 
position vectors and on vectors synchronized through a Block module which stored these values 
and sent them back to the other hardware modules for updates at each clock cycle. However, we 
saved hardware overhead by keeping all the position values in the top level module and only 
passing the values to the few hardware modules which needed them. 

We revised our design and created modules to check the position of Mario against the 
pipe position to output found pipe, and a monster module to change the position of all our 
monsters and check them against Mario’s position to output found death. We also created 
modules to check the position of Mario against an input sprite and to check Mario’s position 
against the edge of the screen. Our new physics engine then only had to update the position of 
Mario dynamically in order to account for gravity, collisions, and upwards, rightwards, and 
leftwards motion commands, with the parameters of whether there was a wall above, below, to 
the left, or to the right simply taken as input. Having a separate module for the monster 
mechanics and monster collisions with Mario allowed us to simplify our design a lot and save on 
logic and memory. Our new block diagram is shown on the following page and greatly increases 
performance. 

 
 
 



 
 
 

 
Top Level Block Revised 

 
 
FINITE STATE MACHINE DESIGN: 
 

FSM Diagram 

 
 We started with a two level state machine for a larger. It had a state transition diagram 
shown above. Its mechanics is as follows and is summarized in the tables below. We started 
game play in a Start State, which allowed the game to Pause until the R Key, which we used for 
our Run signal, was pressed. Our game then transitioned to Level 1 Start, the state where all our 
initial values for Level 1 were loaded and the level one game mechanics prepared. Our game 
immediately transitioned to Level 1 and stayed there until the found pipe signal was asserted. We 
then had a similar sequence of transitions through a Level 2 Start State where our level two game 
mechanics was initialized and into the Level Two State, where it stayed until found star was 
asserted before transitioning to the End State. If found death was asserted in either of our Level 1 
or Level 2 game states, the game immediately transitioned to the end state where our hardware 
waits until the game restarts. 

Output Logic Table 
State Level 1 Start Level 2 Start Level 1 Not Level 2 Not Pause 
Pause Start 0 0 0 0 
Level 1 Start 1 0 0 1 
Level 1 0 0 1 1 
Level 2 Start 0 1 0 1 
Level 2 0 0 0 1 



Pause End 0 0 0 0 
 

Next State Table 
Current State Run Death Found Pipe Got Star Next State 
Pause Start 1 X X X Level 1 Start 
Pause Start 0 X X X Pause Start 
Level 1 Start X X X X Level 1 
Level 1 X 0 1 X Level 2 Start 
Level 1 X 1 X X Pause End 
Level 2 Start X X X X Level 2 
Level 2 X X X 1 Pause End 
Level 2 X 1 X X Pause End 
Level 2 X 0 X 0 Level 2 

 For our scaled down design, our state machine only needed three states. Synchronizing 
our sprite positions in the top level eliminated the need for a start state for the level. We simply 
had start and end states as before and a game play state for our level 1 game mechanics. We also 
added a pause state which outputted a pause signal to stop the game in the middle of game play. 
This added a useful feature and also helped for debugging purposes. Our final FSM has diagram 
and state tables shown below. 

 
Output Logic Table 

State Pause  
Pause Start 1 
Level 1 0 
Pause End 1 
Pause 1 

 
 Next State Table 

Current State Found Pipe Death Reset Run  Pause Next State 
Pause Start X X X 1 X Level 1 
Pause Start X X X 0 X Pause Start 
Level 1 X X X X 1 Pause 
Level 1 1 X X X X Pause End 
Level 1 X 1 X X X Pause End 
Pause End X X X X X Pause End 
Pause X X X 1 X Level 1 
Pause X X X 0 X Pause 



SYSTEM VERILOG IMMPLEMENTATION: 
module physics ( 
 input frame_clk,    // vsync 
 input MarioOn,    // If Mario is On 
 input [4:0] MarioSize,   // size of sprite we want to control 
 input [7:0] keycode,   // Key Code 
 input [9:0] MarioX, MarioY,  // Mario X and Y Position 

  input WallL, WallR, WallU, WallD, // Whether We Have a Wall 
 output [9:0] XOUT, YOUT,  // Mario Output Position 
); 

  
This module implements our improved physics engine. It takes as input the Wall 

parameters which allow it to give Mario the ability to respond to movement commands, fall with 
gravity, and only move in the appropriate reginos. We simply continuously append the position 
of Mario by instantiating the physics engine in the top level. Collisions with the Monsters and 
Coins are completely accounted for with all of our other logic so all physics needs to do is 
determine Mario’s motion in space. Calling the physics engine with the wall parameters allows 
us to simplify our design significantly. 
 
 module bounds ( 
  input frame_clk,    // vsync 
  input MarioOn,    // If Mario Is On 
  input [4:0] MarioSize,   // Size of Mario 
  input [7:0] keycode,   // Key Code 
  input [9:0] MarioX, MarioY,  // Mario X and Y Positions 
  input [9:0] XMax, YMax   // Bounds of Screen 
  output WallL, WallR, WallU, Death, // If We Have found a Wall or Died 

); 
 The above module simply ensures that Mario follows the bounds of the screen. It sets Wall 
parameters at the top, left, and right edges of the screen and asserts the death signal if Mario falls 
off the bottom of the screen and dies.  
 
 module collision ( 
  input frame_clk,    // vsync 
  input MarioOn,    // If Mario Is On 
  input [4:0] MarioSize,   // Size of Mario 
  input [7:0] keycode,   // Key Code 
  input [9:0] MarioX, MarioY,  // Mario X and Y Positions 
  input [9:0] SpriteX, SpiteY,  // X and Y Position of  
  input [9:0] SpriteWidth, SpriteHeight, // Width and Height of Sprite  
  output WallL, WallR, WallU, WallD, // If we have found a wall 

); 
This module is called on Mario with each of the static sprites which Mario cannot enter. 

We simply check the borders of Mario against the borders of the sprites and output the Wall 
logic needed to drive our physics engine, allowing us to simplify our design and use less logic to 
ensure Mario stays within the appropriate boundaries.  
 
 module monster_mod (  
  input Reset, Clk, pause, monsterOn_Cur, 
  input [9:0] MarioX, MarioY,  
  input [9:0] MonsterWidth, MonsterHeight,  
  input [9:0] MonsterX_Init, MonsterYInit,  



  input [9:0] MonsterX_Max, MonsterY_Max,  
  input [9:0] MonsterX_Min, MonsterY_Min, 
  input [9:0] Monster_XStep, Monster_YStep, 
  output [9:0] Monster_X, Monster_Y,  
  output [9:0] Monster_XstepOUT, Monster_YstepOUT, 
  output gameover, monsterOn 
 ); 
 This module, as described above, takes in the positions of a monster sprite and of Mario. 
It simply updates the positions of the monster sprite according to the input value and then 
continuously checks this value against the value of Mario in order to check for death of Mario or 
Death of the monster. We simply called this module for every monster in our game instead of 
having a large module for all the monsters. This allows simplification of our design and 
portability in the graphics engine. 
 
 module cloud (  
  input Reset,  
  input Clk,  
  input [9:0] CloudX_InIt 
                output [9:0]  cloudX 
 ); 
 This is a very simple module that handles the positions of the cloud. We realized that 
since the cloud is the only dynamic sprite and doesn’t affect game mechanics, having a module 
for it in the top level would greatly simplify our drawing of this sprite since it could be directly 
fed to color mapper. 
 
 module coin_on_check( input Reset, Clk, pause, coin_val, 
  input [9:0] MarioX, MarioY,  
  input[9:0] CoinBlock_X, CoinBlock_Y,  
  input[9:0] Mario_Size, CoinBlock_Size  
  output Coin_On 
 ); 
 This module handles all the coin mechanics in one block. It checks Mario’s position 
against the that of the Coin blocks and the coin sprites and turns the coins on when Mario hits the 
bottom of the coin block and off after Mario then gets the coin from the top of the block. 
 
 module pipe_check( input Reset, Clk, pause,  
  input [9:0] MarioX, MarioY,  
  input [9:0] Pipe_X, Pipe_Y,  
  input [9:0] Mario_Size, Pipe_Size  
  output Done 
 ); 
 This pipe checker module was called in our top level and instantiated all the logic to 
calculate found pipe for the state machine. It simply checked Mario’s positions against that of the 
pipe sprite and made the appropriate calculations of the found pipe signal 

Our color mapper module was instantiated in the top level and took all the positions of all 
of our static and dynamic sprites as input. It simply checked the value of the current pixel to be 
drawn against the position of all the sprites and generated the appropriate color of that sprite by 
reading the appropriate Red, Green, and Blue index values from the index arrays for that sprite 
and choosing the correct color as describe above. Color mapper drew the sprites in order of 
priority so that Mario would show over a shrub and cloud would behind monsters. 

 



 module color_mapper ( 
  input Clk, 
  input [9:0] MarioX,  
  input [9:0] MarioY,  
  input [9:0] DrawX,  
  input [9:0] DrawY,  
  input [9:0] Mario_Size,  
  input [9:0] BlockX [0:7],  
  input [9:0] BlockY [0:7],  
  input [9:0] Block_size, 
  input [9:0] GroundX [0:39],  
  input [9:0] GroundY,  
  input [9:0] GroundX_Size,  
  input [9:0] GroundY_Size, 
                 input [9:0] PipeX,  
  input [9:0] PipeY,  
  input [9:0] FlyKoopaX,  
  input [9:0] FlyKoopaY, 
  input [9:0] Pipe_Size,  
  input [9:0] FlyKoopa_Size, 
  input [9:0] CoinBlockX_Pos0,  
  input [9:0] CoinBlockX_Pos1,  
  input [9:0] CoinBlockX_Pos2,  
  input [9:0] CoinBlockX_Pos3,  
  input [9:0] CoinBlockY_Pos0,  
  input [9:0] CoinBlockY_Pos1,  
  input [9:0] CoinBlockY_Pos2,  
  input [9:0] CoinBlockY_Pos3,  
  input [9:0] CoinBlock_size, 
  input [9:0] CloudX_Pos0,  
  input [9:0] CloudX_Pos1, 
  input [9:0] CloudX_Pos2,  
  input [9:0] CloudX_Pos3,  
  input [9:0] CloudY_Pos0,  
  input [9:0] CloudY_Pos1,  
  input [9:0] CloudY_Pos2,  
  input [9:0] CloudY_Pos3,  
  input [9:0] Cloud_size, 
  input [9:0] CoinX_Pos0,  
  input [9:0] CoinX_Pos1,  
  input [9:0] CoinX_Pos2,  
  input [9:0] CoinX_Pos3,  
  input [9:0] CoinY_Pos0,  
  input [9:0] CoinY_Pos1,  
  input [9:0] CoinY_Pos2,  
  input [9:0] CoinY_Pos3,  
  input [9:0] Coin_size, 
  input [9:0] ShrubX_Pos0,  
  input [9:0] ShrubX_Pos1,  
  input [9:0] ShrubX_Pos2,  
  input [9:0] ShrubY_Pos0,  
  input [9:0] ShrubY_Pos1,  
  input [9:0] ShrubY_Pos2,  
  input [9:0] ShrubX_size,  
  input [9:0] ShrubY_size, 
  input [9:0] GoombaX_Pos0,  



  input [9:0] GoombaX_Pos1,   
  input [9:0] GoombaY_Pos0,  
  input [9:0] GoombaY_Pos1,  
  input [9:0] Goomba_size,   
  input FlyKoopa_Show,  
  input Mario_Show,  
  input Goomba_Show0,  
  input Goomba_Show1, 
  input [0:31] [0:31] [0:3] marioredarr, 
  input [0:31] [0:31] [0:3] mariobluearr, 
  input [0:31] [0:31] [0:3] marioreenarr, 
  input [0:31] [0:31] [0:3] blockredarr, 
  input [0:31] [0:31] [0:3] blockbluearr, 
  input [0:31] [0:31] [0:3] blockgreenarr, 
  input [0:31] [0:31] [0:3] groundredarr, 
  input [0:31] [0:31] [0:3] groundbluearr, 
  input [0:31] [0:31] [0:3] groundgreenarr, 
  input [0:31] [0:31] [0:3] piperedarr, 
  input [0:31] [0:31] [0:3] pipebluearr, 
  input [0:31] [0:31] [0:3] pipegreenarr, 
  input [0:31] [0:31] [0:3] flykooparedarr, 
  input [0:31] [0:31] [0:3] flukoopabluearr, 
  input [0:31] [0:31] [0:3] flykoopagreenarr, 
  input [0:31] [0:31] [0:3] coinblockredarr, 
  input [0:31] [0:31] [0:3] coinblockbluearr, 
  input [0:31] [0:31] [0:3] coinblockgreenarr, 
  input [0:31] [0:31] [0:3] cloudredarr, 
  input [0:31] [0:31] [0:3] cloudbluearr, 
  input [0:31] [0:31] [0:3] cloudgreenarr,      
  input [0:31] [0:31] [0:3] coinredarr, 
  input [0:31] [0:31] [0:3] coinbluearr, 
  input [0:31] [0:31] [0:3] coingreenarr, 
  input [0:31] [0:31] [0:3] shrubredarr, 
  input [0:31] [0:31] [0:3] shrubbluearr, 
  input [0:31] [0:31] [0:3] shrubgreenarr, 
  input [0:31] [0:31] [0:3] goombaedarr, 
  input [0:31] [0:31] [0:3] goombabluearr, 
  input [0:31] [0:31] [0:3] goombagreenarr, 
  output logic [7:0] Red, Green, Blue  

);  
Our top level module has module descriptor and synthesis diagram detailed below. It is 

clocked at the FPGAs native clock rate and takes Key Code input from an identical software 
structure to that of lab eight. It contains the necessary interfaces for the VGA monitor which 
displays our game, the Easy On The GO (EZOTG) USB Driver Peripheral for the keyboard 
peripheral, and the SDRAM interface for the NIOS CPU Subsystem which implements our 
software structure.  
 module FinalProject ( 
  input CLOCK_50,   //  
  input [3:0] KEY,     // bit 0 is set up as Reset 
  output [6:0] HEX0, HEX1,  //  
  // VGA Interface  
  output [7:0] VGA_R,   // VGA Red 
  output [7:0] VGA_G,   // VGA Green 
  output [7:0] VGA_B,   // VGA Blue 
  output VGA_CLK,   // VGA Clock 



  output VGA_SYNC_N,   // VGA Sync signal 
  output VGA_BLANK_N,   // VGA Blank signal 
  output VGA_VS,    // VGA vertical sync signal  
  output VGA_HS,    // VGA horizontal sync signal 
  // CY7C67200 Interface 
  inout [15:0] OTG_DATA,   // CY7C67200 Data bus 16 Bits 
  output [1:0] OTG_ADDR,   // CY7C67200 Address 2 Bits 
  output OTG_CS_N,   // CY7C67200 Chip Select 
  output OTG_RD_N,   // CY7C67200 Write 
  output OTG_WR_N,   // CY7C67200 Read 
  output OTG_RST_N,   // CY7C67200 Reset 
  input OTG_INT,   // CY7C67200 Interrupt 
  // SDRAM Interface for NIOS II Software 
   output [12:0] DRAM_ADDR,  // SDRAM Address 13 Bits 
  inout [31:0] DRAM_DQ,   // SDRAM Data 32 Bits 
  output [1:0] DRAM_BA,   // SDRAM Bank Address 2 Bits 
  output [3:0] DRAM_DQM,  // SDRAM Data Mast 4 Bits 
  output DRAM_RAS_N,   // SDRAM Row Address Strobe 
  output DRAM_CAS_N,   // SDRAM Column Address Strobe 
  output DRAM_CKE,   // SDRAM Clock Enable 
  output DRAM_WE_N,   // SDRAM Write Enable 
  output DRAM_CS_N,   // SDRAM Chip Select 
  output DRAM_CLK   // SDRAM Clock 
 ); 
 Our FSM module has the following module descriptor and synthesis diagram. It is also clocked a FPGA 
speeds and takes inputs of Got Start, In Pipe, and Game Over from our Physics engine. It outputs the necessary 
logic: notPause to drive our lower level hardware logic.  
 module Game_FSM ( 
  input logi Run, Reset, Clk, 
  input logic gotStar, inPipe, gameover, 
  input logic [7:0] keycode, 
  output logic notPause 
 ); 

 
 The three modules given below were left over from lab 8. They implement the VGA controller, the IO 
interface with the USB peripheral, and the Hex Driver Display interface with the Altera DE2 Development Board. 
 module vga_controller ( 
  input Clk,           // 50 MHz clock 
                              input Reset,    // reset signal 
                          output logic hs,    // Horizontal sync pulse.  Active low 
  output logic vs,    // Vertical sync pulse.  Active low 
  output logic pixel_clk,    // 25 MHz pixel clock output 
  output logic blank,   // Blanking interval indicator.  Active low. 
  output logic sync,    // Composite Sync signal.  Active low 
  output [9:0] DrawX,   // horizontal coordinate 
  output [9:0] DrawY   // vertical coordinate 
 ); 



  module hpi_io_intf (  
  input [1:0] from_sw_address, 
  output [15:0] from_sw_data_in, 
  input [15:0] from_sw_data_out, 
  input from_sw_r, from_sw_w, from_sw_cs, 
  inout [15:0] OTG_DATA,     
  output [1:0] OTG_ADDR,     
  output OTG_RD_N, OTG_WR_N, OTG_CS_N, OTG_RST_N,  
  input OTG_INT, Clk, Reset 
 ); 
 
 module HexDriver ( 
  input [3:0] In0, 
  output logic [6:0] Out0 
 ); 
 
CONCLUSION: 
 In this lab we went through a professional design process of a custom game including 
graphic design, image processing, sprite design, game mechanics, hardware constrains, memory 
usage, and hardware architecture comparison for several designs. At each stage in the processes 
we had at least two design iterations in order to reach the optimal design for performance and 
quality. We ended up creating a scalable gaming platform that could handle multiple levels and 
complex dynamics between sprites like object collection and dynamic collisions.  
 We implemented our entire design in hardware with minimal memory usage and high 
speed graphics with zero time needed for handshaking with software. Using eight-bit color 
allowed us to increase the speed of our graphics engine tremendously and allowed us to draw 
dynamic sprites with ease by accessing only one set of memory arrays. Our entire design was 
portable and scalable to a large amount of sprites and levels. We made the design decision to use 
only one level in this implementation in order to focus on improving our graphics. Our image 
processing code works with any set of BMP images and can generate eight-bit color and 256 
color sprite tables, in register or ROM format. 
 By going through a long design process, we came up with a design which was of far 
higher quality than any of our original implementations. We used a full hardware implementation 
to cut down on handshaking time, parsed all the physics and position data in C++ to eliminate 
the need to process the entire image in hardware and make our design more scalable, stored the 
sprite data in registers to make our design fully synchronous, created smaller more portable 
modules to effectively scale our design and make it far more portable, and used an eight-bit color 
scheme that allowed for faster graphics speed. 
 This project showcased everything we learned throughout the course of the semester. We 
created a project architecture that used graphics, user input, hardware and software interfaces for 
the user interface, memory architecture, and large scale dynamics between modules. We used all 
our skills at debugging large scale designs to figure out exactly where our design was going 
wrong, and make intelligent decisions about how to fix it, and whether larger changes to our 
design would be more effective. Over the course of the semester we learned how to go through a 
professional design process for a custom hardware design. The game we made was small, but the 
design we built could easily be extended to any size on this hardware platform. The product we 
made is something that cannot be reproduced on a software platform, and its original design 
showcases the depth of intuition for the FPGA hardware architecture we have build over the 
course of the semester by designing custom hardware from the ground up, in all its forms. 


