
Improving SRGAN for Object Detection

Ivan Abraham
University of Illinois at Urbana-Champaign

1308 W Main Street
itabrah2@illinois.edu

Wyatt McAllister
University of Illinois at Urbana-Champaign

1308 W Main Street
wmcalli2@illinois.edu

Justin Wasserman
University of Illinois at Urbana-Champaign

1308 W Main Street
jbwasse2@illinois.edu

1. Summary
In our proposal we called for implementing the network

introduced in [2] in the production version of PyTorch as a
way to learn more about neural networks as well as the new
PyTorch library. We hypothesized that the network could
be made more robust by changing the down-sampling tech-
niques it is exposed to during training. Recall, in the orig-
inal paper the authors implemented a convolutional neural
network which, when trained on sample images, was able
to perform science-fiction like image enhancement as com-
monly shown in television. Termed, single image super-
resolution (SISR), this problem had received extensive at-
tention in the community. As is well known, this is an ill-
posed problem exacerbated by loss of high frequency infor-
mation due to down-sampling. Their approach to solving
the problem was based on a content loss measuring per-
ceptual similarity in super resolved images, in combination
with adversarial training to create Generative Adversarial
Network for Super Resolution (SRGAN). We were able to
get the network implemented in PyTorch; further we were
able to test our hypothesis with positive results vis-a-vis an
object detection metric.

We first studied the algorithm the authors made in [2].
The authors implemented the network in a very old version
of TensorFlow (1.2 ∼ 1.4). We re-implemented it with lat-
est release of the PyTorch library and ran it on our GPU. A
very similar model in [6] had a more objective performance
metric of object detection, while [2] has a subjective met-
ric Mean Opinion Score (MOS), based on human viewers.
To avoid the use of human opinions when testing our hy-
pothesis, we used an object detection performance metric.
Specifically, we compared the number of objects detected
in super resolved images generated by the original network,
and by a network trained with our modifications.

2. SRGAN
We first discuss the basic premise behind the SRGAN

network. Many previous methods focused exclusively on
pixel-wise reconstruction methods such as peak signal-to-
noise ratio, which focus only on the image pixel data, and do
not correlate with the image content perceived by humans.
SRGAN instead focuses on a content loss, lSR

X (Equation
1), capturing the difference between the features of the high
resolution and generated images, where IHR and ILR are
the high resolution and low resolution images, ϕ is the fea-
ture map, and G is the generator of super resolution images.

lSR
X = ϕ

(
IHR

)
− ϕ

(
G
(
ILR

))
(1)

During training the content loss ϕ was implemented us-
ing pre-trained VGG16 and VGG19 networks available by
default in the PyTorch library [?]. In the original paper
the total loss for the generator was a combination of the
content loss from (1), the pixel-wise mean square error
(torch.nn.MSELoss()) and adversarial loss where the
adversarial loss, lSR

G is given as in (Equation 2). Here D
is the discriminator, which outputs the probability that the
generated image is a natural high resolution image.

lSR
G = − logD

(
G
(
ILR

))
(2)

SRGAN consist of two parts: a convolutional feed for-
ward network that learns features to create super-resolved
images, and a discriminative network that functions as an
adversary, and is trained to tell apart real and super resolu-
tion images. The novel approach in this paper is the use of
a content loss, which associates local textures with patches
of the image, and uses them to fill in detail in the high res-
olution image. The neural network finds a feature represen-
tation for the image, and determines textures for each patch
based on these features. These textures are then combined
and smoothed to create the final super resolution image.



Figure 1: Architecture of Generator and Discriminator Networks with corresponding filter size (k), feature number (n), and
filter time step (s) indicated for each convolutional layer.

2.1. Discussion

The neural network architecture used in [6] and [2] pre-
sented several advantages over past work. The exclusive use
of convolutional layers allowed a single model to be trained
on an input image of any size. The use of a feed-forward ar-
chitecture rather than a recurrent architecture improved ef-
ficiency by passing the image through only once to get the
result. Rather than provide a bicubic upsampling of the low
resolution (LR) image as input, the authors upsampled fea-
ture activations so that the image gets upsampled to the final
dimensions of the high resolution (HR) image as it passes
through the network. Additional convolutional layers were
added for extra smoothing of the output image features. The
use of residual blocks instead of stacked convolutional lay-
ers improved efficiency.

3. Project Description
We used the object recognition method from [6], as im-

plemented in [5] to benchmark the performance of SRGAN,
from [2]. We used the Python Imaging Library (PIL) [?],
with Nearest Neighbor, Linear, Bicubic, and Sinc down-
sampling methods to try and improve robustness. We then
performed a second experiment where we removed the Lin-
ear and Nearest Neighbor interpolations, and updated the
loss from VGG16 to VGG 19, which is known to have
higher performance, and examined the affect on the perfor-
mance for object detection.

4. Description of Network
Let k, n and s denote filter (or kernel) size, number of

features detected by each layer, and the time step for each
filter. Then the architecture used by the authors, [2], modi-
fied from the implementation in [3], is given as in Figure 1.
All kernels were 3 × 3. We used 16 residual blocks. Conv
stands for a convolutional layer, and (P/l)ReLU stands for
(Parametric/leaky) rectified linear unit, BN stands for batch
normalization, ⊕ denotes elementwise sum.

For the object detection metric we used the third itera-
tion of a pre-trained neural network called YoLo (You Only
Look Once!), trained on the Common Objects in Context
(COCO) Dataset [?]. This is a state of the art real-time
object detection network that has been validated on many
major data-sets including images and video. We refer the
reader to [5] for details on the network’s architecture.

5. Methods and Experiments
First, we implemented a convolutional neural net to su-

per resolve images, before adding the generative adversarial
net, which give SRGAN its high performance. We then used
the object detector in [5] as metric to compare performance
for the proposed modification to training. We finally bench-
marked our implementation, on the aforementioned object
recognition metric to see if training the network on images
downsampled with different methods improved the perfor-
mance under this metric with positive results.



Figure 2: Object Detection Error Results

6. Resources Used
We ran the experiments on a NVIDIA GeForce GTX

1070 GPU on Mr. Wasserman’s PC. To train SRGAN,
we utilized the Visual Object Classes (VOC) 2012 Dataset,
which consists of over seventeen thousand images, labeled
with object classes [?].

7. Implementation
The production version of PyTorch used gave several

advantages over the original TensorFlow implementation.
In the implementation from [2], the VGG network and
its API had to be written into the network, whereas Py-
Torch already provided pre-trained models as we have al-
ready noted. The use of PyTorch made it much easier
to implement the content loss of (1) using VGG mod-
els. Further, one could easily swap VGG16 model for the
VGG19 model by simply changing a few lines. The mod-
ule torch.utils.data.dataset.DataSet, when
sub-classed properly, requires the definition of the internal
objects __getitem__() and __len__(). This allows
commands to be more “Pythonic” vis-a-vis generator and
list comprehensions. Moreover, the pre-processing steps to
be done on the image (crop, transform etc.) could be built
into the __getitem__() method so that this does not
need to be handled separately. Finally, PyTorch also pro-
vided the related module torchvision.transforms,
which contains most common image transformations one
uses. By converting the loaded data to a Python Imaging
Library (PIL) image format, many transformations could
be composed together easily and conversions from images
to PyTorch tensors to PIL Images could all be handled au-
tomatically. This supports the folk-news that PyTorch is
indeed a more Pythonic framework for neural networks.

8. Results
8.1. Object Detection Metric

For the object detection metric [5], the original SRGAN
Network fails for several objects in many images, such as
the one in Figures 4b and 5b. As shown in Figures 4d and
4f, the network trained with the use of multiple downsam-
pling schemes, which we call Multi-Blur, outperforms the
original SRGAN network. When the Multi-Blur network
is retrained without the Linear and Nearest Neighbor inter-
polations, which are suboptimal for upsampling, the perfor-
mance drops again, as shown in Figures 5d and 5f. This fact,
along with the fact this new scheme included the VGG19
loss instead of the VGG16 loss, which is known to perform
worse without additional multi-scale training tricks [4], sug-
gests that the loss of some texture information leads to the
increased performance. In essence, a loss of some texture
content creates increased robustness of object detection to
the downsampling method used.

As shown in Figure 2, the training scheme Multi-Blur
was tested on the VOC 2012 data set, composed of images
with pre-labeled object classes, and achieved superior per-
formance in terms of object detection error for all interpo-
lation schemes tested. The Multi-Blur (VGG19) scheme
does not show the same improvement without the Linear
and Nearest Neighbor interpolations. The reason for this
is hypothesized to be the fact that the learned weights for
the generative network for the super-resolved images reflect
all of the interpolation schemes. This results in a smooth-
ing out of textures across the entire image. This smoothing
causes a lower variation in the texture information within
objects, improving object detection across all interpolation
schemes, at the cost of reducing photo-realism.



Figure 3: Super Resolution Comparison

9. Discussion of Multi-Blur Performance
As seen in Figure 3, our network training scheme, which

we call Multi - Blur, reduces image artifacts in homoge-
neous image regions, at the expense of smoothing textures
within objects. We see from Figures 4a, 4c, and 4e, it also
does well with fine grained features such as text. As shown
in Figure 4, the Multi-Blur training scheme produces read-
able text for this excerpt of Moby-Dick, while the original
network fails to do so. From Figures 5a, 5c, and 5e, we see
Multi-Blur (VGG19) offers a slight improvement for text,
despite only having a slightly higher classification accuracy.

10. Conclusions
This training scheme improves the SRGAN network per-

formance for object detection. This improvement comes at
the expense of smoothing out image textures. While less
photorealistic, the SR images have less image artifacts, and
do well on images with regular features, such as text.

11. Possible Extensions
The authors of SRGAN comment that super-resolution

of text images is hard because the loss function used tends
to ‘hallucinate’ texture details which may corrupt text con-
tent. One could investigate whether this is an artifact of
the network architecture, or that of the loss used from [7].
The substitution of more appropriate loss function suited
to text may allow the same network to perform well on SR
of textual images. This may possibly be done by training
modifying the VGG network to train on text images.

A possible extension to this work is to utilize optimal
character recognition (OCR) in conjunction with the adver-
sarial network so the adversary compares OCR generated
text from SR image (i.e. SR-text) to OCR generated text
from the HR image in an effort to force the generative net-
work to learn parameters that are suited for text-image SR.
A version of this idea has appeared at the 2018 International
Conference on Pattern Recognition [1].



References
[1] A. Lat and C. Jawahar. Enhancing OCR Accuracy with Su-

per Resolution. In 2019 International Conference on Pattern
Recognition (ICPR). IEEE, jul 2018.

[2] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunning-
ham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and
W. Shi. Photo-Realistic Single Image Super-Resolution Using
a Generative Adversarial Network. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
105–114. IEEE, jul 2017.

[3] leftthomas on GitHub. Pytorch Implementation of SRGAN.
https://github.com/leftthomas/SRGAN, 2018.

[4] Medium. A Review of VGGNet The 1st Runner - Up for The
Image Classification Task, in ILSVRC. https://medium.com
/coinmonks/paper-review-of- vggnet-1st-runner-up-of -ilsvlc-
2014-image-classification-d02355543a11, 2014.

[5] ryoppippi and ayooshkathuria. An Implementation of the
YOLO v3 Object Detection Algorithm. https://github.com/
ayooshkathuria/pytorch-yolo-v3, 2018.

[6] M. S. M. Sajjadi, B. Schölkopf, and M. Hirsch. EnhanceNet:
Single Image Super-Resolution Through Automated Texture
Synthesis. Computer Vision (ICCV), 2017 IEEE International
Conference on, dec 2016.

[7] K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. arXiv, sep
2014.



12. Appendix: Additional Examples
Figure 4 shows additional examples.

(a) Object Detection: Original Image (b) Text: Original Image

(c) Object Detection: SR Image - Multi-Blur (d) Text: SR Image - Multi-Blur

(e) Object Detection: SR Image - SRGAN (f) Text: SR Image - SRGAN

Figure 4: Examples with Multi - Blur. Top row shows original image. Bottom row shows output of SRGAN when given
LR images downsampled with algorithm different than what it trained on. Middle row shows our algorithm, which is more
robust to downsampling technique.



Figure 5 shows additional examples.

(a) Object Detection: Original Image (b) Text: Original Image

(c) Object Detection: SR Image - Multi-Blur (VGG19) (d) Text: SR Image - Multi-Blur (VGG19)

(e) Object Detection: SR Image - SRGAN (f) Text: SR Image - SRGAN

Figure 5: Examples with Multi - Blur (VGG19) with Linear and Nearest Neighbor Interpolations Removed. In this case
the middle row is only slightly better than the bottom row showing that inclusion sub-optimal interpolation algorithm during
training make for a more robust network.


