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Abstract— The paper lays out a Sparse Gaussian Process
Regression architecture for the estimate of the thrust curves
of rigid and flexible quadrotor blades whose dynamics are
unknown. In this learning-framework, the dynamics of the
quadrotor are separated from that for the rigid blade to
expedite computation. This learning model is validated in
simulation and benchmarked against a neural network and
Non-Sparse Gaussian Process methods.

I. INTRODUCTION

The large number of emerging consumer applications of
quadrotors ([1], [2], [3], [4], [5]) are coupled with the
growth in aftermarket modifications ([6], [7], [8], [9], [10]).
Aftermarket parts are modifications that the flight controller
was not optimized for, and this may result in a degradation
of performance. Therefore, creating flight systems which can
mitigate or reverse these affects is useful for the consumer
market. Here we will focus on aftermarket modifications of
the propeller, which may impact the performance of the UAV
by changing the motor input to thrust output dynamics of
the blade, or thrust curve. This paper explores a method
for learning unknown blade dynamics via Sparse Gaussian
Processes.

This research presents a regression architecture, summa-
rized in Figure 1, which utilizes Sparse Gaussian Processes
to estimate the thrust curve of an unknown blade in real time.
This architecture separates the state to thrust dynamics from
the dynamics for the blade. This allows for efficient compu-
tation by replacing the nonlinear dynamics of the quadrotor
with a precomputed Gaussian Process. Our learning archi-
tecture then utilizes a thrust curve estimate which relies on
operating data, where the thrust curve is unknown, and on the
pre-trained thrust to state model, which may come from the
same quadrotor flying with a blade with known dynamics.
In this way, the real-time regression for the thrust curve can
rely on an estimate which is trained on a larger dataset,
leading to higher overall accuracy. The learning framework
presented here is validated on a Crazyflie Simulator [11],
which utilizes a control architecture derived in [12]. We first
show that a perturbation from the thrust curve utilized in
these works causes a significant deviation from the desired
trajectory over that for known blade dynamics. We then
benchmark our system against Neural Network and Non-
Sparse Gaussian Process methods for the regression of rigid
and flexible blades with unknown dynamics.
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II. RELATED RESEARCH AND CONTRIBUTION

This work will help allow quadrotors to utilize new blades
with an unknown thrust curve by presenting an architecture
for real-time learning of the blade dynamics. Previous work
involving the estimation of quadrotor dynamics utilized a
neural network approach, which integrated the dynamics of
the blade [13]. Our approach separates the blade dynamics
from the quadrotor dynamics. While we only retrain the
model for the blade if the rotor is interchanged, the previous
work would require the entire neural network to be retrained
every time the blade was exchanged. Our architecture will
help allow aftermarket modifications for the rotors to be
utilized on quadrotors without compromising their perfor-
mance. The Sparse Gaussian Process approach utilized here
is computationally efficient, allowing this architecture to
operate on devices with limited computational resources.

III. OVERVIEW

This paper is organized as follows. In section IV, we out-
line the control formulation of this problem. In section V, we
present a theoretical explanation of Gaussian Processes, and
present the motivation behind the utilization of the Sparse
Gaussian Process framework for this application. In Section
VI, we then present a detailed description of our algorithm
within the Gaussian Process framework introduced. Finally,
in Section VII, we present a detailed validation of our
architecture, showing its performance for model regression as
compared against Neural Network and Non-Sparse Gaussian
Process approaches, and validating its impact on the per-
formance of the quadrotor simulation utilized here. We also
examine the performance of these methods for regressing
the dynamics of flexible rotors, approximated as bounded
and continuous stochastic perturbations from the blade rigid
dynamics.

IV. CONTROL FORMULATION

As mentioned previously, the quadrotor simulation used
here, [11], is based on a control architecture detailed in [12].
In this control model, the motor command is computed based
on the current and desired attitude, Ai, and Ad. ϕ̇
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Fig. 1: This is the control architecture used for the UAV simulation in [11], where the controller actuates the systems through
the UAV model. A state estimate is computed based on a sensor model. Our architecture then takes the state and computes
the thrust estimate using a precomputed Gaussian process. An online Gaussian Process then computes the thrust curve,
which is updated in the dynamics utilized by the control architecture.

In this model the constants a1, a2, a3, a4, a5, b1, b2, b3 are
given in terms of the moments of inertia Ix, Iy, Iz and the
inertia matrix in the body frame Jr.
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The input commands U2, U3, U4 are the control inputs de-
tailed in [12] which are dependent on the dynamics for
the blades. The estimate for the blade dynamics used in
this controller is given by To. In this work, we show that
our learning architecture improves the performance of the
controller when the known blade dynamics are replaced with
that of an unknown blade.

To (ω) = ω2 (4)

V. BACKGROUND ON GAUSSIAN PROCESSES

This section presents the theoretical background for the
Gaussian Process methods utilized in this paper. In section V-
A, we present a theoretical explanation of Gaussian Process
regression. Then, in Section VII-B, we discuss the method-
ology behind the Sparse Gaussian Process framework, and
explain how this expedites computation over Gaussian Pro-
cess methods which utilize the full set of basis.

A. GP Regression

Let s be the set of state measurements.

Sτ = {s1, ..., sτ}

In this case the state is given by the pitch, roll, and yaw,
ϕ, θ, φ, and the linear and angular acceleration of the quadro-
tor within the earth frame, ẍ, ÿ, z̈, ϕ̈, θ̈, φ̈.

s =
[
ϕ θ φ ϕ̈ θ̈ φ̈ ẍ ÿ z̈

]
(5)

We then write the thrust, T (s), as a Gaussian process.

T (s) ∼ GP
(
m (s) , k

(
s, s′

))
(6)



For each state measurement, the observed output is given by
the mean for each sample plus a Gaussian noise term ϵ.

yzi = m (si) + εi, εi ∼ N
(
0, ω2

)
(7)

Therefore, the state measurements are transformed to ob-
served system outputs, and our desire is to extract the thrust
estimate from tis data.

sτ = {s1, ..., sτ} → y = {y1, ..., yτ}T

The set of possible states is an infinite dimensional function
space, in this case a Hilbert Space. Within the Gaussian
Process framework, this space is spanned be a set of kernel
functions, which each have Gaussian distribution.

k (s, so) = e

(
− ∥s−so∥

2σ2

)
(8)

We define the following quantities in terms of the kernel
functions: K, the covariance matrix up to time τ , ksτ+1 ,
the joint covariance of the new measurement with that of
the previous sequence, and k∗sτ+1

, the covariance of the new
measurement.

Kij = k
(
si, sj

)
(9)

ksτ+1 = K (sτ , sτ ) (10)

k∗sτ+1
= k (sτ+1, sτ+1) (11)

Each new data point, sτ+1, will then lead to a resultant
update in the posterior Gaussian distribution for the data.
Each new observation yτ+1 is jointly distributed with the
previous observation sequence yτ .[

yτ
yτ+1

]
∼ N

0,

[
K (sτ , sτ ) + ω2I ksτ+1

kTsτ+1
k∗sτ+1

] (12)

It is known that the conditional distribution of the latest
observation given the previous observation sequence is also
Gaussian.

P
(
yτ+1| sτ , yτ , sτ+1

)
∼ N

(
m̂τ+1, Σ̂τ+1

)
(13)

This distribution is written in terms of the best estimate m̂τ+1

and the error covariance Σ̂τ+1.

m̂τ+1 = βT
τ+1ksτ+1 (14)

Σ̂τ+1 = k∗sτ+1
− kTsτ+1

Cτksτ+1 (15)

These in tern involve the inverse covariance of the observa-
tion sequence, Cτ , and the product of this term with the new
observation, βτ+1.

Cτ =
(
K (sτ , sτ ) + ω2I

)−1

(16)

βτ+1 = Cτyτ (17)

B. Motivation for Sparse Gaussian Processes

As one can observe from the constants above, the inverse
must be computed in this scenario. Computing the Gaussian
Process with the full basis set requires a computation time
of O(N3) [14], where N is the total size of the training
data. We therefore desire a method to expedite computation
by pruning the space of basis while maintaining an effective
state estimate given all the current data. Gaussian Process
Algorithms which realize this are called Sparse Gaussian
Processes. Furthermore, since we desire a model that trains
in real-time, we need a Sparse Gaussian Process Algorithm
which is optimized for an online setting, whiles rules out
offline Sparse Gaussian Process approaches such as ([15],
[16]). An Online Sparse GP Algorithm is Csato’s Algorithm
[14], which is shown to reduce the computation time from
O(N3) to O(Np2), where N is the total size of the training
data and p is the size of the basis set. Furthermore, the
online nature of this algorithm requires that it only make
one pass through the dataset to train.

We now provide a mathematical explanation of why the
Sparse Gaussian Process framework provides added effi-
ciency without compromising estimation accuracy. We define
the coefficient ατ to be the stochastic projection of the new
data onto the old within the kernel space, as given by the
known best estimate for the Gaussian process.

ατ = K−1
Sτ
ksτ+1 (18)

We define the length of the residual γτ+1, to be the distance
between the basis of the new data point, and the sum of the
projections onto the other bases functions as given by the
product of the coefficients α with each basis.

γτ+1 = min
αi

∥∥∥∥∥∥
τ∑

i=1

αiψ (zi)− ψ (sτ+1)

∥∥∥∥∥∥
2

(19)

Matching the components of this expression with the known
parameters in the Gaussian process, we arrive at an expres-
sion for γτ+1 which includes the known parameters.

γτ+1 = k∗τ+1 − kTsτ+1
ατ (20)

Our desire is to utilize an algorithm which chooses a basis
set that results in the largest overall stochastic difference
between the basis vectors. Sparse Gaussian Process achieve
this goal. These algorithms first add the candidate basis
to the basis set. Then, they test the KL divergence of all
subsets of this space where one of the basis is removed, and
discard the basis that results in the minimum KL divergence
when removed.

Our implementation, detailed in the following section,
presents a two-tiered architecture which utilizes Csato’s Al-
gorithm to compute a Gaussian Process estimate of the thrust
curve based on another pre-computed Gaussian Process for
the state to thrust relationship.



VI. ALGORITHM FOR THRUST CURVE ESTIMATE

As discussed in the previous section, we compute an
estimate for the Thrust based on the current state data
utilizing a Gaussian Process Regression Model. This estimate
is defined to be the mean of the Gaussian Process.

T (s) ∼ GP
(
m̂T (s) , kT (s, s)

)
⇒ T̂ (s) = m̂T (s) (21)

This model is trained with an existing UAV Control simula-
tion for the Crazyflie Quadrotor [17]. For these experiments,
several different thrust curves were generated by perturbing
the existing quadratic thrust curve, T (ω), with linear and
constant terms, which may represent a different thickness,
length, or weight of the blade ([17], [18]). This function rep-
resents an unknown blade dynamics after the blade has been
changed. Our assumption is that the dynamics relating the
state to the thrust, m̂T (s), can be trained independently of
the relationship between the motor input and the thrust, m̂ω .
Based on the regression framework described in the previous
section, the state to thrust dynamics, m̂T (s), is known. We
therefore use a nested Gaussian Process architecture for the
estimation of the relationship between the motor speed and
the thrust, m̂ω . We start with the state data, s, for the system
with the unknown blade.

s =
[
ϕ θ φ ϕ̈ θ̈ φ̈ ẍ ÿ z̈

]
(22)

Our new Gaussian process regression model for the motor
command will include a composite state, s, which is com-
posed of the thrust estimate for the updated state data along
with the data itself.

s′ =
[
m̂T (s) s

]
(23)

To estimate the motor command, ω, we now use a Gaussian
Process Regression Model which is identical to that for the
thrust. However, the state here is replaced by the composite
state, s′.

ω
(
s′
)
∼ GP

(
m̂ω

(
s′
)
, kω

(
s′, so

))
⇒ ω̂ (s) = m̂ω

(
s′
)

(24)

To implement this architecture, summarized in Figure 1, we
utilize the regression framework described in this section
and summarized in Algorithm 1 Below. The software for
this algorithm was adapted from the implementation of
Csato’s algorithm provided by [19].

Algorithm 1 Algorithm 1
1: INPUT: Gaussian Process Regression Model for Thrust T (s) = m̂T (s),

updated state data s.
2: Compute the thrust estimate for the state data m̂T (s).
3: Define the composite state to be:

s
′
=

[
m̂T (s) s

]
(25)

4: Compute the Gaussian Process Regression for the Motor Command, ω.

ω
(
s
′
)

∼ GP

(
m̂ω

(
s
′
)
, kω

(
s
′
, so

))
⇒ ω̂ (s) = m̂ω

(
s
′
)

(26)

VII. RESULTS

In this section, we test this model on the simulated
control architecture utilized here. First, in section VII-A, we
show how our parameter estimation framework improves the
performance of the Crazyflie quadrotor simulation [11] used
here for unknown blade dynamics. Second, in section VII-
B, we test our learning architecture on several different sets
of blade dynamics. Then, in section VII-C, we show that
the accuracy of the regression for the thrust dynamics is not
affected by the blade dynamics the system was trained on.
In Section VII-D, we compare our systems performance to a
system which utilizes a single hidden layer neural network.
In Section VII-E, we repeat this comparison for a regression
using Non-Sparse Gaussian Process from Rasmussen [20].
In section VII-F, we examine the performance of these three
architectures for the regression of the dynamics of a flexible
blade. Finally, in VII-G, we show that the results of the
previous experiment are not changed significantly when the
thrust curve estimator utilizes an estimate for the thrust
dynamics trained on the unknown blade instead of the known
blade.

A. Validation of Control Architecture

In this section, we replace the known dynamics of the
blade, To (repeated below), with those of an unknown blade.
We then confirm that the tracking error for the attitude
control is improved when an online GP estimate for the new
blade dynamics is utilized instead of the previous estimate
for the blade dynamics.

To (ω) = ω2 (27)

The desired trajectory utilized for these experiments is shown
in Figure 3, where the control has knowledge of the correct
thrust curve given by To. In our experiment, we first compute
average deviation from the desired trajectory or tracking
error, e, when the correct thrust curve is known. We then
replace the blade dynamics in the simulation with those of
an unknown blade. We re-compute the deviation again when
the controller utilizes our Gaussian process estimate for the
actuated thrust curve, Tnew. Next, we compute the deviation
when Tnew is actuated but the invalid estimate of To is
utilized in control. These results are summarized in Table
1 below.

Tnew (ω) = ω2 + 500 · ω + 500 (28)

e =

√(
x− xref

)2
+
(
y − yref

)2
+
(
z − zref

)2√
x2ref + y2ref + z2ref

(29)

Table 1: Performance of Controller

Simulation Ttrue (ω) Test. (ω) e
Test 1 To To 0.30050
Test 2 Tnew T̂new,GP 0.31810
Test 3 Tnew To 0.30078



As shown in equations 29 and 30, our estimate for the thrust
curve improves the tracking error for the unknown dynamics
from approximately four percent of what it was for known
dynamics to under one percent. This performance improve-
ment shows that our learning positively model impacts the
attitude control for this experiment.

∆eo =
eknown − eunknown

eknown
=

|0.3050− 0.3181|
0.3050

= 4.29%

(30)

∆e′ =
eknown − eest

eknown
=

|0.3050− 0.3078|
0.3050

= 0.918%

(31)

The position in this quadrotor simulation is measured in
meters. Therefore, as shown in equation 32, the tracking error
is improved by approximately 2 cm.

∆e = 31.81− 30.078 = 1.732 (32)

This improvement is significant for applications where sev-
eral quadrotors may operate close to humans [4].

B. Validation of Learning Architecture for Thrust Curve

We assume model accuracy for the Gaussian process
regression to be within a certain process noise ϵ. For the
thrust model, we write the thrust prediction T p, in terms of
the desired thrust from the simulation T d, and the process
noise.

T p = T d + εT ⇒ εT =
∣∣∣T p − T d

∣∣∣ (33)

The process noise is approximated by the root mean square
error for the model.

ε̂T ≈
√(

T̂ p − T̂ d
)2

= RMSET (34)

The estimator, and process noise for the motor command are
written similarly.

ωp = ωd + εω ⇒ εω =
∣∣∣ωp − ωd

∣∣∣ (35)

ε̂ω ≈
√(

ω̂p − ω̂d
)2

= RMSEω (36)

We now examine the four thrust curves summarized in
Table 1. The process noise for each regression is shown.
Furthermore, the error at each state, as defined in equations
35 and 36, is plotted alongside the regressed functions. These
plots are shown in Figures 3, 4, 5, and 6 for Blades 1, 2, 3,
and 4 respectively.

E =
T p − T d

T d
(37)

Eω =
ωp − ωd

ωd
(38)

Table 1: Performance with SGP for Dynamic Inversion

Simulation T (ω) RMSET RMSEω

Blade 1 ω2 + ω + 1 0.0109 0.0056
Blade 2 ω2 + 5 · ω + 5 0.0106 0.0057
Blade 3 ω2 + 50 · ω + 50 0.0108 0.0057
Blade 4 ω2 + 500 · ω + 500 0.0111 0.0057

The estimate of the process noise ϵ, is the root mean square
error above. Therefore, these results show that we expect the
estimate of the thrust, T p, to be within approximately 0.01 N
from the desired thrust, T d, and the estimate for the motor
command, ωp, to be within a deviation of just over 0.005
RPM from the desired motor command, ωd. The following
sections will demonstrate that the Gaussian Process estimator
for the state to thrust relationship may be trained on a
different dataset from which it is tested, and show the utility
of this estimation framework for UAV control.

C. Examination of Performance for Pre-Trained Dynamic
Model

The results for Blades 1, 2, 3, and 4 as shown in Table
1 and Figures 4, 5, 6, and 7, show how the regression
performs on the given data sets. We now examine how this
performance changes when the thrust model is pre-trained
on a different data from the one it is tested on.

For this experiment, we pre-train the Gaussian Process
estimator for the state the thrust relationship on the data given
by the thrust curve, Ttrain (ω), and then validate it on the
data set given by the thrust curve for Blades 1, 2, 3 and 4,
Tblade (ω). As summarized in Table 2, the regression model
is tested on the new state data with the updated thrust curves
for Blades 1, 2, 3 and 4. The results are summarized in Table
2, where it is observed that the accuracy is almost identical to
that trained with the previous thrust estimate. This confirms
that the decoupling of the thrust to state dynamics from
the thrust to motor command dynamics does not affect the
overall regression for the motor command. This confirms
that, in the system considered, regression will be robust to
the replacement of rotor blades when using a pre-trained
model for the state to thrust dynamics.

Ttrain (ω) = ω2 (39)

TBlade,1 (ω) = ω2 + ω + 1 (40)

TBlade,2 (ω) = ω2 + 5 · ω + 5 (41)

TBlade,3 (ω) = ω2 + 50 · ω + 50 (42)

TBlade,4 (ω) = ω2 + 500 · ω + 500 (43)

Table 2: Performance of Pre-Trained Dynamic Model
Simulation RMSET train RMSET test

Blade 1 0.0108 0.0109
Blade 2 0.0107 0.0106
Blade 3 0.0108 0.0108
Blade 4 0.0111 0.0111



Fig. 2

D. Comparison Against Neural Network

In this section, an inversion of the dynamics for the four
blades, as shown in Table 1, is done with a Single Hidden
Layer Neural Network. A sketch of a typical single hidden
layer neural network is shown in [22], and repeated in Figure
2. Unlike Figure 2, we have ten hidden neurons and ten
inputs corresponding to the states given by equations 18 and
19.

This network utilizes ten hidden neurons, a sigmoidal
activation function given in equation 42, an output equation
given by equation 43, and weight update equations given by
equations 44 and 45.

v =
1

1 + e
−

n∑
i=1

XiWi

(44)

yp = yp + v ·Wy (45)

W ′
i =Wi + η · v · (1− v) ·

(
yd − yp

)
·Wy ·Xi (46)

W ′
y =Wy + η · v ·

(
yd − yp

)
(47)

This network trains over two hundred epochs. The root mean
square error for each epoch is computed. Process noise for
the experiments with each blade is given by the minimum of
the root mean square error over all the epochs, as summarized
in Table 3 below, where the left column shows the process
noise for the neural network approach and the right side
(repeated from Table 1) shows a comparison with the nested
Sparse Gaussian Process approach. Figures 8, 9, 10 and 11
plot the predicted motor command, ωp, against the desired
command, ωp, and show this plot above that charting the
RMSE for each epoch.

ε̂ω = min
epochs

RMSEω,epoch (48)

Table 3: The RMSE for the neural network approach is in
the column for RMSEωNN

. This is compared to the RMSE
for the Sparse Gaussian Process approach RMSEωSGP .

Note that RMSEωSGP
is repeated from Table 1.

Simulation RMSEωNN RMSEωSGP

Blade 1 0.0032 0.0056
Blade 2 0.0031 0.0057
Blade 3 0.0031 0.0057
Blade 4 0.0048 0.0057

As can be seen in Table 3, the neural network approach
outperforms the error of the Sparse GP by approximately
fifty percent.

We, then benchmark the overall system when our Sparse
Gaussian Process estimator for the motor command, ω, is
computed based on an estimate for the thrust provided by
the above neural network. From here forward, we will refer
to this as an NN-SGP architecture.

Table 4: The RMSE for the NN-SGP, is in the column for
RMSEωNN

. This is compared to the RMSE for the nested
Sparse Gaussian Process approach RMSEωSGP

. Note that
RMSEωSGP is repeated from Table 1.

Simulation RMSEωNN
RMSEωSGP

Blade 1 0.0060 0.0056
Blade 2 0.0058 0.0057
Blade 3 0.0072 0.0057
Blade 4 0.0059 0.0057

Table 4 shows that the nested Gaussian Process
architecture delivers superior performance to the hybridized
neural network approach on this dataset. This may be
because of the limited available data or because of the depth
of the network.

Finally, we benchmark the performance of our overall
system against a nested neural network structure, where the
first neural network computes the state to thrust dynamics,
and these are utilized by the second neural network to
compute the blade dynamics.

Table 5: The RMSE for nested neural network is in the
column for RMSEωNN

. This is compared to the RMSE for
the nested Sparse Gaussian Process approach RMSEωSGP

.
Note that RMSEωSGP

is repeated from Table 1.
Simulation RMSEωNN

RMSEωSGP

Blade 1 0.0060 0.0056
Blade 2 0.0059 0.0057
Blade 3 0.0060 0.0057
Blade 4 0.0089 0.0057

Table 5 shows that the nested Sparse Gaussian Process ar-
chitecture delivers superior performance to the nested neural
network approach on this dataset. This may be because of the
limited available data of compounding in the error between
the two networks.



E. Comparison Against Non-Sparse Gaussian Process

In this section, an inversion for the dynamics of the
four blades, shown in Table 1, is done with a Non-Sparse
Gaussian Process. This Gaussian Process is a direct imple-
mentation of the Gaussian Process regression detailed in
Section V-A, utilizing a regression implementation detailed
in [20]. The RMSE for each inversion is shown in Table 6.
The Gaussian Process output is plotted in Figures 11, 12, 13,
and 14.

Table 6: The RMSE for GP is in the column for
RMSEωGP . This is compared to the RMSE for the nested
Sparse GP approach RMSEωSGP

. Note that RMSEωSGP

is repeated from Table 1.

Simulation RMSEωGP
RMSEωSGP

Blade 1 1.3303e-04 0.0056
Blade 2 1.3222e-04 0.0057
Blade 3 1.2776e-04 0.0057
Blade 4 1.2992e-04 0.0057

Table 6 shows that the Non-Sparse Gaussian Process
delivers superior performance for inversion of the blade
dynamics, as is to be expected.

We again benchmark the overall system when our Sparse
Gaussian Process estimator for the motor command, ω, is
computed based on an estimate for the thrust dynamics
computed with the above Non-Sparse GP implementation.
From here forward, we refer to this as a GP-SGP architecture.
These results are shown in Table 7.

Table 7: The RMSE for the GP-SGP is in the column for
RMSEωGP . This is compared to the RMSE for the nested
Sparse Gaussian Process approach RMSEωSGP

. Note that
RMSEωSGP is repeated from Table 1.

Simulation RMSEωGP
RMSEωSGP

Blade 1 0.0059 0.0056
Blade 2 0.0058 0.0057
Blade 3 0.0059 0.0057
Blade 4 0.0058 0.0057

Table 7 shows that the hybrid approach with the Non-
Sparse Gaussian Process does not improve performance. As
shown in Table 8, this is not a result of overfitting in the
Non-Sparse GP.

Finally, we benchmark the performance of our overall
system against a nested Non-Sparse Gaussian Process net-
work structure, where the first GP computes the state to
thrust dynamics, and these are utilized by the second neural
network to compute the blade dynamics.

Table 8: The RMSE for nested GP is in the column for
RMSEωGP

. This is compared to the RMSE for the nested
Sparse Gaussian Process approach RMSEωSGP . Note that

RMSEωSGP
is repeated from Table 1.

Simulation RMSEωGP
RMSEωSGP

Blade 1 1.2854e-04 0.0056
Blade 2 1.3123e-04 0.0057
Blade 3 1.3059e-04 0.0057
Blade 4 1.2857e-04 0.0057

Table 8 shows that the nested Gaussian Process architecture
delivers superior performance to the nested Sparse Gaussian
Process approach on this dataset.

F. Performance of Algorithms for Systems with Deformable
Blades

Allowing quadrotors to adapt to deformable blades with
unknown dynamics is useful for applications where the
quadrotor will operate near humans [4]. Past work has shown
that the dynamic response of deformable blades is bounded
[21]. To model a flexible rotor, we desire noise which is
both bounded and continuous. For continuity, we choose, a
Brownian motion, δ, as our noise model. For boundedness,
we model the perturbation of the flexible blade as a cosine
of the Brownian motion. The resulting thrust, Tdeform, is
shown in equation 43.

Tdeform (ω) = ω2 +A · cos (δ) , δ ∼ N (0, t) (49)

In this experiment, we first train the thrust dynamics
for our learning system on the rigid blade, Trigid. Then,
we benchmark the performance of the regression for the
thrust curve of Tdeform, on the nested NN, GP, and SGP
approaches with varying amplitude. These results are shown
in Table 9.

Trigid (ω) = ω2 (50)

Table 9: The RMSE for nested GP is in the column for
RMSEωGP . The RMSE for nested NN is in the column

for RMSEωNN
. The RMSE for the nested Sparse

Gaussian Process is in the column for RMSEωSGP .

A RMSEωGP RMSEωNN RMSEωSGP

1 1.3185e-04 0.0031 0.0059
5 1.3225e-04 0.0032 0.0060
50 1.3051e-04 0.0031 0.0058
500 1.2289e-04 0.0031 0.0059

Table 9 shows that these learning architectures have com-
parable performance to when they were tested on the models
for the rigid blades summarized in Tables 1, 3, and 6.

G. Validation of Pre-Trained Thrust Model for Learning
Architectures

Here, unlike the previous section, the regressions are
trained on the deformable blade dynamics. These results are
shown in Table 10. This will allow us to benchmark the
performance of our learning architectures against a system



using a thrust model which is pre-trained on the rigid blade
dynamics, as in the previous section.

Table 10: The RMSE for nested GP is in the column for
RMSEωGP . The RMSE for nested NN is in the column

for RMSEωNN
. The RMSE for the nested Sparse

Gaussian Process is in the column for RMSEωSGP .

A RMSEωGP
RMSEωNN

RMSEωSGP

1 1.2816e-04 0.0032 0.0059
5 1.2893e-04 0.0032 0.0060
50 1.3225e-04 0.0031 0.0058
500 1.2287e-04 0.0031 0.0059

To compare the performance of the learning architectures
when they utilize different blade dynamics to train the thrust
model, we calculate the percent change in the RMSE, ∆,
between Tables 9 and 10, shown in Table 11 below.

Table 11: The percent change in the RMSE for nested GP
is in the column for ∆ωGP . The Percent change in the
RMSE for nested NN is in the column for ∆ωNN

. The
percent change in the RMSE for the nested Sparse
Gaussian Process is in the column for ∆ωSGP

.

A ∆ωGP
∆ωNN

∆ωSGP

1 -2.879 +3.125 0
5 -2.575 0 0
50 +1.315 0 0
500 -0.0162 0 0

Table 11 shows that the percent change in the RMSE for
these architectures is small when the pre-trained thrust model
replaces the thrust model trained with the data resulting from
the new blade with unknown dynamics. The relatively small
percentage changes, all below 4%, given the high amplitude
of the stochastic term, validates the separation of the blade
dynamics and quadrotor dynamics for these architectures.
We note that the Non-Sparse GP decreases for one of the
datasets, whereas the error for the Sparse GP does not
measurably change. Even though the Sparse GP has a much
larger error than the Non-Sparse GP, its results are more
consistent across multiple trails.

VIII. CONCLUSION

These results show that, in this simulated set of experi-
ments, our learning model is accurate for the regression of
the dynamics of unknown blades. This accomplishes the goal
of this project, which was to compare the performance of the
Sparse Gaussian process regression for the regression of the
thrust to motor input relationship of unknown blades with
that of neural networks and Non-Sparse Gaussian Processes.
It was shown that this architecture augments an existing UAV
control previously simulated on the Crazyflie by estimating
an unknown thrust curve. This learning model utilized a
nested Sparse Gaussian Process framework, which took
advantage of the dynamics of the UAV to allow computation
of the thrust curve of the unknown blade using a thrust to
state model pre-trained with a known blade.
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Fig. 3: Desired Trajectory: This figure shows the attitude control for the quadrotor after takeoff. The desired trajectory is
shown in black, and the blue trajectory shows the quadrotor taking off before engaging attitude control.



(a) Thrust Estimate

(b) Omega Estimate

Fig. 4: Blade 1



(a) Thrust Estimate

(b) Omega Estimate

Fig. 5: Blade 2



(a) Thrust Estimate

(b) Omega Estimate

Fig. 6: Blade 3



(a) Thrust Estimate

(b) Omega Estimate

Fig. 7: Blade 4



Fig. 8: Neural Network Approach: Bade 1



Fig. 9: Neural Network Approach: Bade 2



Fig. 10: Neural Network Approach: Bade 3



Fig. 11: Neural Network Approach: Bade 4



Fig. 12: Non-Sparse GP: Bade 1



Fig. 13: Non-Sparse GP: Bade 2



Fig. 14: Non-Sparse GP: Bade 3



Fig. 15: Non-Sparse GP: Bade 4


