

Implementation of the Task Delegation
Interface for the Automation Supporting
Prolonged Independent Residence for the

Elderly (ASPIRE) program

Sebastian S. Rodriguez, Wyatt McAllister, Ambika Dubey, Amber Zhang

Department of Computer Science

University of Illinois at Urbana-Champaign

Abstract
The Automation Supporting Prolonged Independent Residence for the Elderly (ASPIRE)

program, a multidisciplinary approach in using drones to enhance aging in place, has shown

promising results into the future of coexisting with autonomous drones, particularly in the fields

of psychology and robotics. In order to connect computer devices to the drones, a base

command-recognition interface is described and developed, dubbed the Task Delegation

Interface (TDI). The Task Delegation Interface works by taking advantage of modularity; if the

user requests a drone to perform a particular action, the action is decomposed into smaller

actions, and executed independently in order to track completion of the action, and in case of

failure, know the location, time and reason of failure, and apply error handling routines as

necessary. Finally, the Task Delegation Interface serves as an abstraction of low level drone

control and flight routines, allowing a simple network connection to serve as a gateway for

commands. Any device capable of connecting to a network and sending/receiving data over the

TCP protocol is able to control a set of drones in a household, providing a more practical

environment for future testing.

Introduction
The Automation Supporting Prolonged Independent Residence for the Elderly (ASPIRE)

program aims to develop a framework for developers that will enable an assistive environment

for the elderly using autonomous drones. The research group has made notable advances in the

fields of psychology (a VR testbed for drones, a VR approach in measuring arousal when drones

are nearby), and robotics (implanting emotion into drone movement, real-time collision

avoidance, pathfinding with moving targets. The method to join these architectures together was

theorized through a hierarchical task manager, where actions taken by the drones can be

decomposed into subtasks. In this report, we implement said interface, dubbed the Task

Delegation Interface.

The Task Delegation Interface serves as an abstraction of the low level routines executed inside

the drones’ architecture (movement, pathfinding, synchronicity); a device need only to connect

to the network hosting the drones, and send structured packets through a pre-defined port. The

Task Delegation Interface will decompose, validate, and ensure execution of each action

requested in the safest way possible, taking proactive measures to ensure the user’s safety. This

document specifies the Task Delegation Interface’s development and logic, with the aim that

future work will expand it.

Task Delegation Interface Implementation
The Task Delegation Interface (TDI) was developed with one principle in mind: Allow

developers the freedom to design proprietary applications that control a set of drones in a

household, as is the goal of the ASPIRE program. Figure 1 details the control flow from user

input from a Human Interface Device, to movement output to the drones.

Figure 1. Task Delegation Interface control flow diagram

Input Interpreter (I2)
The Input Interpreter (pronounced eye-two) serves as the main application gateway for Human

Interface Devices to send/receive information about the TDI. A Human Interface Device (HID)

is any piece of technology capable of connecting to a network and sending/receiving information

through the Transmission Control Protocol (TCP). An HID connected to the TDI will be referred

to as a “client” from herein.

To establish a connection between a client and the TDI, TCP’s 3-way handshake

(SYN-SYN-ACK) will be utilized (Figure 2). The client requests a connection by sending a

packet containing a synchronization request. The TDI will respond by acknowledging the

request, accepting it. The client then responds with acknowledgement of the acceptance. After

the TDI receives the client’s final acknowledge, the TDI will begin accepting request from that

client; thus, the final acknowledge is non-negotiable.

Figure 2. TDI 3-way handshake connection method

The I2 will then accept any incoming data from the connected client and attempt to execute any

request sent. Clients will be required to send action requests to the TDI following a specific

format, else it is to be rejected. Requests must contain an action’s string identifier (e.g.

“return_home”), the number of arguments (this number should be the sum of all parameters of

each subtask), and arguments. After the I2 determines the request is valid, it sends it to the High

Level Manager. Additionally, it sends the client an acknowledgment, which can be used drive

the client’s interface.

High Level Manager (HLM)
The High Level Manager deconstructs the request sent by the I2, looks up the execution timeline

pertaining to the action requested, and constructs the argument list used by the Low Level

Handler. An execution timeline is a list of subtask identifiers, signifying the order of subtasks to

be executed to resemble the action. Allowing modularity, we can create any action by combining

subtasks, as long as we have enough arguments to cover each subtask’s parameters. An argument

list is constructed from the original request to be sent to the Low Level Handler, in order of

parameters with respect to each subtask (Figure 3).

Figure 3. High Level Manager node control flow diagram

Low Level Handler (LLH)
The Low Level Handler receives an execution timeline and an ordered list of arguments, and

executes each subtask with a set of arguments. For each subtask, the LLH retrieves the amount of

arguments needed from the list, and sends an individual request to the Drone Controller. The

Drone Controller responds if that individual subtask was executed successfully. If it was, the

LLH sends the following request to the Drone Controller with the next subtask (Figure 4). If at

any point a subtask fails, the LLH knows what part of the action was unable to be completed, and

sends it back to the HLM for error handling.

Figure 4. Low Level Handler node control flow diagram

Drone Controller (DC)
The Drone Controller resolves the subtask identifier, ensures integrity of the arguments, and

interfaces with the bridge between the TDI and the Vicon system. The subtask is sent to the

drone asynchronously; it returns success when the bridge is able to initiate the subtask in the

drones. Because the nodes run inside ROS, we are able to access drone position in a

three-dimensional space, potentially allowing the DC to track subtask progress and return

success. This will be implemented in the future.

Task Delegation Interface Settings
Constants and options are defined in a separate file accessible by all TDI nodes. Constants such

as hostnames and ports for connectivity, positions for the drone stations and interactables, and

developer debug options are stored here. Additionally, an interface can be developed to edit these

constants as users set up their own drone systems.

Test Client Implementation
Upon completion of the TDI, an Android application was built to serve as the first client to verify

the full control flow from a Human Interface Device to movement of a drone in a secure space.

Using Android Studio, Google’s integrated development environment (IDE) powered by IntelliJ

IDEA to develop Android applications, we tested the integrity of commands and connection

reliability.

Upon launch of the application, the user is greeted with a connection page to input an IP address

and port, with the other side being a valid TDI server listening to a port (Figure 5). This page is

only used for debugging purposes, as connecting to the TDI should be seamless and invisible to

the user. After connecting, the root menu launches, with various actions in a grid layout (Figure

6). For purposes of this implementation, only “Return Home” and “Move To Position (Debug)”

are fully functioning. Upon execution of an action, the interface presents a “Cancel” button

(Figure 7).

Figure 5. Connection activity Figure 6. Root Menu activity

Figure 7. Task update in UI and Cancel option

“Return Home” is a zero-argument action that returns the active drone to a predefined position

set in the Task Delegation Interface Settings. Home can be defined as the default position for a

drone or the location of a drone station. “Move To Position (Debug)” is a debugging tool that

directly moves the drone to a specified position in a three-dimensional space, using Vicon

infrared sensors to track position of the drone.

For an initial test run, we began by launching the drone to a low position near the ground. We

raised its altitude by passing a Move To Position (Debug) command with the Z argument

equaling 0.50 meters (Figure 8). We continued raising the altitude to 1 meter with the

appropriate Z argument (Figure 9). Finally, we moved the drone through the Y-axis by passing

the appropriate parameter (Figure 10). Thanks to the drone’s self-stabilization module, it was

able to fly around the space with no apparent issues.

Figure 8. Move To Position (Debug) command, with default X, Y parameters, Z=0.50

Figure 9. Move To Position (Debug) command, with default X, Y parameters, Z=1.00

Figure 10. Move To Position (Debug) command, with default X parameter, Y=1.00, Z=1.00

Future Work and Conclusion
The Task Delegation Interface is fully open to the implementation of supporting future features.

Currently on our scope, we aim to develop:

● Allow worker threads to complete task requests asynchronously

○ Currently, the TDI only serves one request at a time, and is not scalable for

multiple-client connections

● Allow connection of multiple clients to the TDI simultaneously

○ Multiple clients mimic real world conditions (i.e. multiple devices controlling a

set of drones)

● Allow queuing of tasks from multiple clients

○ Different users can interact with the drones, and by defining priority, the order of

incoming actions can be modified.

With completed development of the Task Delegation Interface, developers can now design their

own applications that will control a set of drones around a household. The device must only need

the capability to establish a TCP connection and send data through it. Human Interface Devices

are limitless: laptops, tablets, smartphones, wearables, voice interfaces, microcontrollers are all

possible candidates. Developers will be provided with a specification guide as a foundation to

connect their applications to the Task Delegation Interface.

Acknowledgements
This research was primarily supported by the National Science Foundation through the

University of Illinois at Urbana-Champaign Intelligent Robotics Laboratory, under Award

Number 1525900.

